Menu Close

Let-f-be-a-positive-function-Let-I-1-1-k-k-x-f-x-1-x-dx-I-2-1-k-k-x-f-x-1-x-dx-where-2k-1-gt-0-Then-I-1-I-2-is-




Question Number 50132 by CIRCLE001 last updated on 14/Dec/18
Let f  be a positive function. Let  I_1 =∫_(1−k) ^k x f{x(1−x} dx,   I_2 =∫_(1−k) ^k x f{x(1−x} dx,   where 2k−1>0. Then (I_1 /I_2 )  is
$$\mathrm{Let}\:{f}\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{function}.\:\mathrm{Let} \\ $$$${I}_{\mathrm{1}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$${I}_{\mathrm{2}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$$\mathrm{where}\:\mathrm{2}{k}−\mathrm{1}>\mathrm{0}.\:\mathrm{Then}\:\frac{{I}_{\mathrm{1}} }{{I}_{\mathrm{2}} }\:\:\mathrm{is} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Dec/18
in question I_1  and I_2  identical...pls check   question...
$${in}\:{question}\:{I}_{\mathrm{1}} \:{and}\:{I}_{\mathrm{2}} \:{identical}…{pls}\:{check}\: \\ $$$${question}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *