Menu Close

0-1-1-x-2-1-3-2-dx-




Question Number 55089 by eso last updated on 17/Feb/19
 ∫_( 0) ^1   (1/((x^2 +1)^(3/2) )) dx =
$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }\:{dx}\:= \\ $$
Commented by maxmathsup by imad last updated on 17/Feb/19
let I =∫_0 ^1   (dx/((1+x^2 )^(3/2) ))   changement x =tant give   I =∫_0 ^(π/4)     ((1+tan^2 t)/((1+tan^2 t)^(3/2) ))dt = ∫_0 ^(π/4)    (dt/((1+tan^2 t)^(1/2) )) =∫_0 ^(π/4)   (cos^2 t)^(1/2)  dt  =∫_0 ^(π/4)  cost dt =[sint]_0 ^(π/4)  =((√2)/2)
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\:{changement}\:{x}\:={tant}\:{give}\: \\ $$$${I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dt}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\left({cos}^{\mathrm{2}} {t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cost}\:{dt}\:=\left[{sint}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *