Menu Close

Question-196111




Question Number 196111 by sonukgindia last updated on 18/Aug/23
Answered by mahdipoor last updated on 18/Aug/23
⇒⇒⇒⇒ if n≤x ⇒  Σ=(x−1)+...+(x−n)=nx−((n^2 +n)/2)=  x^2 −(n+1)x+(((n^2 +2n+5)/4))  ⇒x^2 +(−2n−1)x+(((3n^2 +4n+5)/4))=0  ⇒x=n+((1+(√(n^2 −4)))/2)≥n          (n≥2)  {note:x≥n , x=n+((1−(√(n^2 −4)))/2)<n ⇒∄}  ⇒⇒⇒⇒⇒ if  x≤1 ⇒  ...  ⇒x=((1−(√(n^2 −4)))/2)≤1                 (n≥2)  ⇒⇒⇒⇒⇒ if 1<x<n ⇒        get⌊x⌋=a  Σ=[(x−1)+(x−2)+...+(x−⌊x⌋)]+  [(⌊x⌋+1−x)+....+(n−1−x)+(n−x)]=  ((a(2x−1−a))/2)+(((n−a)(a+1+n−2x))/2)=  ((n^2 +n)/2)−nx+2ax−a^2 −a=x^2 −(n+1)x+((n^2 +2n+5)/4)  ⇒x^2 −(2a+1)x+(((5−n^2 )/4)+a^2 +a)=0  ⇒x=a+((1±(√(n^2 −4)))/2) ,⌊x⌋=a ⇒⌊a+((1±(√(n^2 −4)))/2)⌋=a  ⌊((1±(√(n^2 −4)))/2)⌋=0⇒only when  n=2⇒x=(3/2)  ⇒⇒⇒⇒⇒⇒  a_1 =∄   ( get a_1 =0  !)  a_2 =2.5+0.5+1.5=4.5  a_(n≥3) =n+((1+(√(n^2 −4)))/2)+((1−(√(n^2 −4)))/2)=n+1  ⇒⇒⇒⇒⇒⇒  2(a_1 +...+a_(20) )=1.5+Σ_2 ^(20) (n+1)=229.5
$$\Rightarrow\Rightarrow\Rightarrow\Rightarrow\:{if}\:{n}\leqslant{x}\:\Rightarrow \\ $$$$\Sigma=\left({x}−\mathrm{1}\right)+…+\left({x}−{n}\right)={nx}−\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}}= \\ $$$${x}^{\mathrm{2}} −\left({n}+\mathrm{1}\right){x}+\left(\frac{{n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{5}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\left(−\mathrm{2}{n}−\mathrm{1}\right){x}+\left(\frac{\mathrm{3}{n}^{\mathrm{2}} +\mathrm{4}{n}+\mathrm{5}}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}={n}+\frac{\mathrm{1}+\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\geqslant{n}\:\:\:\:\:\:\:\:\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$$\left\{{note}:{x}\geqslant{n}\:,\:{x}={n}+\frac{\mathrm{1}−\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}<{n}\:\Rightarrow\nexists\right\} \\ $$$$\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\:{if}\:\:{x}\leqslant\mathrm{1}\:\Rightarrow \\ $$$$… \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}−\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\leqslant\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$$\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\:{if}\:\mathrm{1}<{x}<{n}\:\Rightarrow\:\:\:\:\:\:\:\:{get}\lfloor{x}\rfloor={a} \\ $$$$\Sigma=\left[\left({x}−\mathrm{1}\right)+\left({x}−\mathrm{2}\right)+…+\left({x}−\lfloor{x}\rfloor\right)\right]+ \\ $$$$\left[\left(\lfloor{x}\rfloor+\mathrm{1}−{x}\right)+….+\left({n}−\mathrm{1}−{x}\right)+\left({n}−{x}\right)\right]= \\ $$$$\frac{{a}\left(\mathrm{2}{x}−\mathrm{1}−{a}\right)}{\mathrm{2}}+\frac{\left({n}−{a}\right)\left({a}+\mathrm{1}+{n}−\mathrm{2}{x}\right)}{\mathrm{2}}= \\ $$$$\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}}−{nx}+\mathrm{2}{ax}−{a}^{\mathrm{2}} −{a}={x}^{\mathrm{2}} −\left({n}+\mathrm{1}\right){x}+\frac{{n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{5}}{\mathrm{4}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\left(\mathrm{2}{a}+\mathrm{1}\right){x}+\left(\frac{\mathrm{5}−{n}^{\mathrm{2}} }{\mathrm{4}}+{a}^{\mathrm{2}} +{a}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}={a}+\frac{\mathrm{1}\pm\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\:,\lfloor{x}\rfloor={a}\:\Rightarrow\lfloor{a}+\frac{\mathrm{1}\pm\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\rfloor={a} \\ $$$$\lfloor\frac{\mathrm{1}\pm\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\rfloor=\mathrm{0}\Rightarrow{only}\:{when}\:\:{n}=\mathrm{2}\Rightarrow{x}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \\ $$$${a}_{\mathrm{1}} =\nexists\:\:\:\left(\:{get}\:{a}_{\mathrm{1}} =\mathrm{0}\:\:!\right) \\ $$$${a}_{\mathrm{2}} =\mathrm{2}.\mathrm{5}+\mathrm{0}.\mathrm{5}+\mathrm{1}.\mathrm{5}=\mathrm{4}.\mathrm{5} \\ $$$${a}_{{n}\geqslant\mathrm{3}} ={n}+\frac{\mathrm{1}+\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}+\frac{\mathrm{1}−\sqrt{{n}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}={n}+\mathrm{1} \\ $$$$\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \\ $$$$\mathrm{2}\left({a}_{\mathrm{1}} +…+{a}_{\mathrm{20}} \right)=\mathrm{1}.\mathrm{5}+\underset{\mathrm{2}} {\overset{\mathrm{20}} {\sum}}\left({n}+\mathrm{1}\right)=\mathrm{229}.\mathrm{5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *