Menu Close

find-the-value-of-cos-x-2-x-1-dx-




Question Number 66064 by mathmax by abdo last updated on 08/Aug/19
find the value of ∫_(−∞) ^(+∞)  cos(x^2 −x+1)dx
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){dx} \\ $$
Commented by mathmax by abdo last updated on 09/Aug/19
let A =∫_(−∞) ^(+∞)  cos(x^2 −x+1)dx ⇒ A =∫_(−∞) ^(+∞)  cos((x−(1/2))^2  +(3/4))dx  =_(x−(1/2)=t)    ∫_(−∞) ^(+∞)  cos(t^2  +(3/4))dt =Re( ∫_(−∞) ^(+∞)  e^(−i(t^2  +(3/4))) dt)  ∫_(−∞) ^(+∞)  e^(−i(t^2  +(3/4))) dt =e^(−(3/4)i)  ∫_(−∞) ^(+∞)  e^(−it^2 ) dt =_((√i)t =u)   e^(−(3/4)i)  ∫_(−∞) ^(+∞)  e^(−u^2 ) (du/( (√i)))  =e^(−((iπ)/4))  e^(−(3/4)i)   (√π) =(√π) e^(−i((π/4)+(3/4)))  ⇒  ∫_(−∞) ^(+∞)  cos(t^2  +(3/4))dt =(√π)cos((π/4)+(3/4)) ⇒  A =(√π)cos((π/4)+(3/4)) .
$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){dx}\:\Rightarrow\:{A}\:=\int_{−\infty} ^{+\infty} \:{cos}\left(\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right){dx} \\ $$$$=_{{x}−\frac{\mathrm{1}}{\mathrm{2}}={t}} \:\:\:\int_{−\infty} ^{+\infty} \:{cos}\left({t}^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right){dt}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:{e}^{−{i}\left({t}^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)} {dt}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:{e}^{−{i}\left({t}^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)} {dt}\:={e}^{−\frac{\mathrm{3}}{\mathrm{4}}{i}} \:\int_{−\infty} ^{+\infty} \:{e}^{−{it}^{\mathrm{2}} } {dt}\:=_{\sqrt{{i}}{t}\:={u}} \:\:{e}^{−\frac{\mathrm{3}}{\mathrm{4}}{i}} \:\int_{−\infty} ^{+\infty} \:{e}^{−{u}^{\mathrm{2}} } \frac{{du}}{\:\sqrt{{i}}} \\ $$$$={e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−\frac{\mathrm{3}}{\mathrm{4}}{i}} \:\:\sqrt{\pi}\:=\sqrt{\pi}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right)} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{cos}\left({t}^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right){dt}\:=\sqrt{\pi}{cos}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right)\:\Rightarrow \\ $$$${A}\:=\sqrt{\pi}{cos}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *