Menu Close

prove-that-the-curve-x-1-2-y-2-x-1-2-y-2-4-is-an-ellipse-and-find-its-semi-major-axis-and-semi-minor-axis-




Question Number 196723 by mr W last updated on 30/Aug/23
prove that the curve   (√((x−1)^2 +y^2 ))+(√((x+1)^2 +y^2 ))=4   is an ellipse and find its semi  major axis and semi minor axis.
$${prove}\:{that}\:{the}\:{curve}\: \\ $$$$\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }+\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{4}\: \\ $$$${is}\:{an}\:{ellipse}\:{and}\:{find}\:{its}\:{semi} \\ $$$${major}\:{axis}\:{and}\:{semi}\:{minor}\:{axis}. \\ $$
Answered by Frix last updated on 30/Aug/23
Squaring, transforming etc. leads to  (x^2 /4)+(y^2 /3)=1  Testing with y^2 =((12−3x^2 )/4) in the given equation  gives  ∣x+4∣+∣x−4∣=8; true for −4≤x≤4
$$\mathrm{Squaring},\:\mathrm{transforming}\:\mathrm{etc}.\:\mathrm{leads}\:\mathrm{to} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{y}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{1} \\ $$$$\mathrm{Testing}\:\mathrm{with}\:{y}^{\mathrm{2}} =\frac{\mathrm{12}−\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{in}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation} \\ $$$$\mathrm{gives} \\ $$$$\mid{x}+\mathrm{4}\mid+\mid{x}−\mathrm{4}\mid=\mathrm{8};\:\mathrm{true}\:\mathrm{for}\:−\mathrm{4}\leqslant{x}\leqslant\mathrm{4}\: \\ $$
Commented by mr W last updated on 30/Aug/23
��
Answered by mr W last updated on 30/Aug/23
v=(√((x−1)^2 +y^2 ))  u=(√((x+1)^2 +y^2 ))  u+v=4  u^2 +v^2 =2(x^2 +y^2 +1)  u^2 −v^2 =4x  ⇒u−v=x  ⇒u=((4+x)/2)  ⇒v=((4−x)/2)  u^2 +v^2 =((2(16+x^2 ))/4)=2(x^2 +y^2 +1)  3x^2 +4y^2 =12  ⇒(x^2 /2^2 )+(y^2 /(((√3))^2 ))=1  ⇒ellipse with a=2, b=(√3)
$${v}=\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${u}=\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${u}+{v}=\mathrm{4} \\ $$$${u}^{\mathrm{2}} +{v}^{\mathrm{2}} =\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$${u}^{\mathrm{2}} −{v}^{\mathrm{2}} =\mathrm{4}{x} \\ $$$$\Rightarrow{u}−{v}={x} \\ $$$$\Rightarrow{u}=\frac{\mathrm{4}+{x}}{\mathrm{2}} \\ $$$$\Rightarrow{v}=\frac{\mathrm{4}−{x}}{\mathrm{2}} \\ $$$${u}^{\mathrm{2}} +{v}^{\mathrm{2}} =\frac{\mathrm{2}\left(\mathrm{16}+{x}^{\mathrm{2}} \right)}{\mathrm{4}}=\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} =\mathrm{12} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{ellipse}\:{with}\:{a}=\mathrm{2},\:{b}=\sqrt{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *