Menu Close

Question-197040




Question Number 197040 by peter frank last updated on 06/Sep/23
Commented by TheHoneyCat last updated on 08/Sep/23
a)   Q=XY+X^� Z+YZ  =(X+X^� )(XY+X^� Z+YZ)  =(XY+XYZ)+(X^� Z+X^� YZ)  =(X(Y+YZ) )+(X^� (Z+YZ) )  =(XY)+(X^� Z)  =XY+X^� Z    OR[ AND[X,Y], AND[NOT[X],Z]]
$$\left.{a}\right)\: \\ $$$${Q}={XY}+\bar {{X}Z}+{YZ} \\ $$$$=\left({X}+\bar {{X}}\right)\left({XY}+\bar {{X}Z}+{YZ}\right) \\ $$$$=\left({XY}+{XYZ}\right)+\left(\bar {{X}Z}+\bar {{X}YZ}\right) \\ $$$$=\left({X}\left({Y}+{YZ}\right)\:\right)+\left(\bar {{X}}\left({Z}+{YZ}\right)\:\right) \\ $$$$=\left({XY}\right)+\left(\bar {{X}Z}\right) \\ $$$$={XY}+\bar {{X}Z} \\ $$$$ \\ $$$$\mathrm{OR}\left[\:\mathrm{AND}\left[{X},{Y}\right],\:\mathrm{AND}\left[\mathrm{NOT}\left[{X}\right],{Z}\right]\right] \\ $$
Commented by TheHoneyCat last updated on 08/Sep/23
b)  Q=XY+XZ +Y(Y+Z)+XY  =XY+XZ +Y(Y+Z)  =XY+XZ+YY+YZ  =XY+XZ+Y+YZ  =XY+XZ+Y  =XZ+Y    OR[Y,AND[X,Z]]
$$\left.{b}\right) \\ $$$${Q}={XY}+{XZ}\:+{Y}\left({Y}+{Z}\right)+{XY} \\ $$$$={XY}+{XZ}\:+{Y}\left({Y}+{Z}\right) \\ $$$$={XY}+{XZ}+{YY}+{YZ} \\ $$$$={XY}+{XZ}+{Y}+{YZ} \\ $$$$={XY}+{XZ}+{Y} \\ $$$$={XZ}+{Y} \\ $$$$ \\ $$$$\mathrm{OR}\left[{Y},\mathrm{AND}\left[{X},{Z}\right]\right] \\ $$
Commented by TheHoneyCat last updated on 08/Sep/23
c)  let W:=X+Y  Q=W(W+Z)  =W+WZ  =W  =X+Y    OR[X,Y]
$$\left.{c}\right) \\ $$$$\mathrm{let}\:{W}:={X}+{Y} \\ $$$${Q}={W}\left({W}+{Z}\right) \\ $$$$={W}+{WZ} \\ $$$$={W} \\ $$$$={X}+{Y} \\ $$$$ \\ $$$$\mathrm{OR}\left[{X},{Y}\right] \\ $$
Commented by TheHoneyCat last updated on 08/Sep/23
d)  let W:= XY  Q=W+WZ+WZ^�   =W  =XY    AND[X,Y]
$$\left.{d}\right) \\ $$$$\mathrm{let}\:{W}:=\:{XY} \\ $$$${Q}={W}+{WZ}+{W}\bar {{Z}} \\ $$$$={W} \\ $$$$={XY} \\ $$$$ \\ $$$$\mathrm{AND}\left[{X},{Y}\right] \\ $$
Commented by peter frank last updated on 10/Sep/23
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by TheHoneyCat last updated on 11/Sep/23
you're welcome
Answered by TheHoneyCat last updated on 08/Sep/23
e)  Q=XY^�     AND[X,NOT[Y]]
$$\left.{e}\right) \\ $$$${Q}={X}\bar {{Y}} \\ $$$$ \\ $$$$\mathrm{AND}\left[{X},\mathrm{NOT}\left[{Y}\right]\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *