Menu Close

How-do-I-use-the-Lagrange-multiplier-method-to-find-the-maximum-of-the-function-f-x-y-4-2x-2y-on-the-curve-x-2-y-2-4-




Question Number 137741 by bemath last updated on 06/Apr/21
  How do I use the Lagrange multiplier method to find the maximum of the function f(x,y)=4-2x-2y on the curve x^2+y^2=4?
$$ \\ $$How do I use the Lagrange multiplier method to find the maximum of the function f(x,y)=4-2x-2y on the curve x^2+y^2=4?
Answered by TheSupreme last updated on 06/Apr/21
you can find abs max and min, searching relative max and mkn[of  g(x,y,λ)=4−2x−2y+λ(x^2 +y^2 −4)  so   grad g(x,y,λ)= { ((−2+2λx=0)),((−2+2λy=0)),((x^2 +y^2 −4=0)) :}   { ((x=(1/λ))),((y=(1/λ))),(((2/λ^2 )=4)) :}  (x,y,λ)=((√2),(√2),((√2)/2))  (x,y,λ)=(−(√2),−(√2),−((√2)/2))
$${you}\:{can}\:{find}\:{abs}\:{max}\:{and}\:{min},\:{searching}\:{relative}\:{max}\:{and}\:{mkn}\left[{of}\right. \\ $$$${g}\left({x},{y},\lambda\right)=\mathrm{4}−\mathrm{2}{x}−\mathrm{2}{y}+\lambda\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}\right) \\ $$$${so}\: \\ $$$${grad}\:{g}\left({x},{y},\lambda\right)=\begin{cases}{−\mathrm{2}+\mathrm{2}\lambda{x}=\mathrm{0}}\\{−\mathrm{2}+\mathrm{2}\lambda{y}=\mathrm{0}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}=\mathrm{0}}\end{cases} \\ $$$$\begin{cases}{{x}=\frac{\mathrm{1}}{\lambda}}\\{{y}=\frac{\mathrm{1}}{\lambda}}\\{\frac{\mathrm{2}}{\lambda^{\mathrm{2}} }=\mathrm{4}}\end{cases} \\ $$$$\left({x},{y},\lambda\right)=\left(\sqrt{\mathrm{2}},\sqrt{\mathrm{2}},\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$\left({x},{y},\lambda\right)=\left(−\sqrt{\mathrm{2}},−\sqrt{\mathrm{2}},−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$
Answered by mr W last updated on 06/Apr/21
x^2 +y^2 =2^2   ⇒x=2 cos θ, y=2 sin θ  f(x,y)=4−2(x+y)=4−4(cos θ+sin θ)               =4−4(√2) sin (θ+(π/4))  max=4+4(√2)=4(1+(√2))  min=4−4(√2)=4(1−(√2))
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{2}\:\mathrm{cos}\:\theta,\:{y}=\mathrm{2}\:\mathrm{sin}\:\theta \\ $$$${f}\left({x},{y}\right)=\mathrm{4}−\mathrm{2}\left({x}+{y}\right)=\mathrm{4}−\mathrm{4}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4}−\mathrm{4}\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right) \\ $$$${max}=\mathrm{4}+\mathrm{4}\sqrt{\mathrm{2}}=\mathrm{4}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${min}=\mathrm{4}−\mathrm{4}\sqrt{\mathrm{2}}=\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *