Menu Close

lim-x-3-cos3-cosx-x-3-




Question Number 197496 by sciencestudentW last updated on 19/Sep/23
lim_(x→3) ((cos3−cosx)/(x−3))=?
$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{{cos}\mathrm{3}−{cosx}}{{x}−\mathrm{3}}=? \\ $$
Answered by cortano12 last updated on 20/Sep/23
 = lim_(x→3)  ((−2sin (((x+3)/2)) sin (((3−x)/2)))/(−2(((3−x)/2))))   = lim_(x→3)  sin (((x+3)/2)) . lim_(x→3) (((sin (((3−x)/2)))/((((3−x)/2)))))   = sin 3 .(1)= sin 3
$$\:=\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{−\mathrm{2sin}\:\left(\frac{\mathrm{x}+\mathrm{3}}{\mathrm{2}}\right)\:\mathrm{sin}\:\left(\frac{\mathrm{3}−\mathrm{x}}{\mathrm{2}}\right)}{−\mathrm{2}\left(\frac{\mathrm{3}−\mathrm{x}}{\mathrm{2}}\right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\mathrm{sin}\:\left(\frac{\mathrm{x}+\mathrm{3}}{\mathrm{2}}\right)\:.\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:\left(\frac{\mathrm{3}−\mathrm{x}}{\mathrm{2}}\right)}{\left(\frac{\mathrm{3}−\mathrm{x}}{\mathrm{2}}\right)}\right) \\ $$$$\:=\:\mathrm{sin}\:\mathrm{3}\:.\left(\mathrm{1}\right)=\:\mathrm{sin}\:\mathrm{3} \\ $$
Commented by MM42 last updated on 19/Sep/23
Sin3 ⋮
$${Sin}\mathrm{3}\:\vdots \\ $$
Answered by chengulapetrom last updated on 25/Sep/23
=lim_(x→3) ((sinx)/1)  =sin 3
$$={lim}_{{x}\rightarrow\mathrm{3}} \frac{{sinx}}{\mathrm{1}} \\ $$$$={sin}\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *