Menu Close

Water-is-leaking-from-a-hemispheric-bowl-of-radius-20cm-at-the-rate-of-0-5cm-3-s-Find-the-rate-at-which-surface-area-of-the-water-decreasing-when-the-water-level-is-halfway-from-the-top-Thank-you




Question Number 197640 by Mastermind last updated on 25/Sep/23
Water is leaking from a hemispheric  bowl of radius 20cm at the rate of   0.5cm^3 /s. Find the rate at which surface  area of the water decreasing when the  water level is halfway from the top.    Thank you
$${Water}\:{is}\:{leaking}\:{from}\:{a}\:{hemispheric} \\ $$$${bowl}\:{of}\:{radius}\:\mathrm{20}{cm}\:{at}\:{the}\:{rate}\:{of}\: \\ $$$$\mathrm{0}.\mathrm{5}{cm}^{\mathrm{3}} /{s}.\:{Find}\:{the}\:{rate}\:{at}\:{which}\:{surface} \\ $$$${area}\:{of}\:{the}\:{water}\:{decreasing}\:{when}\:{the} \\ $$$${water}\:{level}\:{is}\:{halfway}\:{from}\:{the}\:{top}. \\ $$$$ \\ $$$${Thank}\:{you} \\ $$
Answered by mr W last updated on 25/Sep/23
Commented by mr W last updated on 25/Sep/23
volume of water V=πh^2 (R−(h/3))  (dV/dt)=πh(2R−h)(dh/dt)  ⇒(dh/dt)=(1/(πh(2R−h)))×(dV/dt)  at h=(R/2):  (dh/dt)=(4/(3πR^2 ))×(dV/dt)=(4/(3π×20^2 ))×(−0.5)       =−0.00053 cm/s
$${volume}\:{of}\:{water}\:{V}=\pi{h}^{\mathrm{2}} \left({R}−\frac{{h}}{\mathrm{3}}\right) \\ $$$$\frac{{dV}}{{dt}}=\pi{h}\left(\mathrm{2}{R}−{h}\right)\frac{{dh}}{{dt}} \\ $$$$\Rightarrow\frac{{dh}}{{dt}}=\frac{\mathrm{1}}{\pi{h}\left(\mathrm{2}{R}−{h}\right)}×\frac{{dV}}{{dt}} \\ $$$${at}\:{h}=\frac{{R}}{\mathrm{2}}: \\ $$$$\frac{{dh}}{{dt}}=\frac{\mathrm{4}}{\mathrm{3}\pi{R}^{\mathrm{2}} }×\frac{{dV}}{{dt}}=\frac{\mathrm{4}}{\mathrm{3}\pi×\mathrm{20}^{\mathrm{2}} }×\left(−\mathrm{0}.\mathrm{5}\right) \\ $$$$\:\:\:\:\:=−\mathrm{0}.\mathrm{00053}\:{cm}/{s} \\ $$
Commented by Mastermind last updated on 25/Sep/23
Thank you so much
$${Thank}\:{you}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *