Menu Close

Question-197660




Question Number 197660 by pticantor last updated on 25/Sep/23
Answered by witcher3 last updated on 25/Sep/23
U_n =∫_0 ^1 (dt/(1+t+...t^n ))≤∫_0 ^1 dt=1  lim_(n→∞) U_n =∫_0 ^1 lim_(n→∞) (dt/(1+...+t^n ))=∫_0 ^1 lim_(n→∞) ((1−t)/(1−t^(n+1) ))dt  =∫_0 ^1 1−tdt=(1/2)
$$\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}+…\mathrm{t}^{\mathrm{n}} }\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{dt}=\mathrm{1} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{dt}}{\mathrm{1}+…+\mathrm{t}^{\mathrm{n}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{t}}{\mathrm{1}−\mathrm{t}^{\mathrm{n}+\mathrm{1}} }\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{1}−\mathrm{tdt}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *