Menu Close

a-3b-a-b-1-a-3b-1-a-b-3-4-a-b-




Question Number 197683 by sulaymonnorboyev140 last updated on 26/Sep/23
((a+3b)/(a+b−1))+((a+3b−1)/(a+b−3))=4  a+b=?
$$\frac{{a}+\mathrm{3}{b}}{{a}+{b}−\mathrm{1}}+\frac{{a}+\mathrm{3}{b}−\mathrm{1}}{{a}+{b}−\mathrm{3}}=\mathrm{4} \\ $$$${a}+{b}=? \\ $$
Commented by mr W last updated on 26/Sep/23
no unique solution for a+b.  please check your question!
$${no}\:{unique}\:{solution}\:{for}\:{a}+{b}. \\ $$$${please}\:{check}\:{your}\:{question}! \\ $$
Answered by Frix last updated on 26/Sep/23
This is equal to  ((2(a−((11)/4))^2 )/3)−((2(b+(3/4))^2 )/3)=1∧b≠1−a∧b≠3−a  Which is the equation of a hyperbola without  the points ((3/2), −(1/2)) and (4,−1)  a+b∈R\{2}
$$\mathrm{This}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\frac{\mathrm{2}\left({a}−\frac{\mathrm{11}}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{2}\left({b}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{3}}=\mathrm{1}\wedge{b}\neq\mathrm{1}−{a}\wedge{b}\neq\mathrm{3}−{a} \\ $$$$\mathrm{Which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{without} \\ $$$$\mathrm{the}\:\mathrm{points}\:\left(\frac{\mathrm{3}}{\mathrm{2}},\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{and}\:\left(\mathrm{4},−\mathrm{1}\right) \\ $$$${a}+{b}\in\mathbb{R}\backslash\left\{\mathrm{2}\right\} \\ $$
Answered by ajfour last updated on 26/Sep/23
a+b=p   a−b=q  ((2p−q)/(p−1))+((2p−q−1)/(p−3))=4  ⇒  (2p−q)(p−3)+(2p−q−1)(p−1)          =4(p−1)(p−3)  (16−6−q−2−q−1)p        =12+3q+q+1  ⇒  (7−2q)p=13+4q  p=a+b=((13+4q)/(7−2q))=((27−(14−4q))/(7−2q))  a+b=((27)/(7−2q))−2
$${a}+{b}={p}\:\:\:{a}−{b}={q} \\ $$$$\frac{\mathrm{2}{p}−{q}}{{p}−\mathrm{1}}+\frac{\mathrm{2}{p}−{q}−\mathrm{1}}{{p}−\mathrm{3}}=\mathrm{4} \\ $$$$\Rightarrow\:\:\left(\mathrm{2}{p}−{q}\right)\left({p}−\mathrm{3}\right)+\left(\mathrm{2}{p}−{q}−\mathrm{1}\right)\left({p}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{4}\left({p}−\mathrm{1}\right)\left({p}−\mathrm{3}\right) \\ $$$$\left(\mathrm{16}−\mathrm{6}−{q}−\mathrm{2}−{q}−\mathrm{1}\right){p} \\ $$$$\:\:\:\:\:\:=\mathrm{12}+\mathrm{3}{q}+{q}+\mathrm{1} \\ $$$$\Rightarrow\:\:\left(\mathrm{7}−\mathrm{2}{q}\right){p}=\mathrm{13}+\mathrm{4}{q} \\ $$$${p}={a}+{b}=\frac{\mathrm{13}+\mathrm{4}{q}}{\mathrm{7}−\mathrm{2}{q}}=\frac{\mathrm{27}−\left(\mathrm{14}−\mathrm{4}{q}\right)}{\mathrm{7}−\mathrm{2}{q}} \\ $$$${a}+{b}=\frac{\mathrm{27}}{\mathrm{7}−\mathrm{2}{q}}−\mathrm{2} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *