Menu Close

Question-197680




Question Number 197680 by mr W last updated on 26/Sep/23
Commented by mr W last updated on 26/Sep/23
unsolved old question Q#197245
$${unsolved}\:{old}\:{question}\:{Q}#\mathrm{197245} \\ $$
Answered by mr W last updated on 26/Sep/23
Commented by mr W last updated on 26/Sep/23
R=radius of yellow semicircle  r=radius of green semicircle  p=radius of pink semicircle  (√((R+r)^2 −(R−r)^2 ))=(√((R+p)^2 −R^2 ))+(√((r+p)^2 −r^2 ))  2(√(Rr))=(√(p(2R+p)))+(√(p(2r+p)))  2(√(Rr))−(√(p(2R+p)))=(√(p(2r+p)))  2Rr+(R−r)p=2(√(Rrp(2R+p)))  4R^2 r^2 +(R−r)^2 p^2 +4Rr(R−r)p=4Rrp(2R+p)  ⇒(6Rr−R^2 −r^2 )p^2 +4Rr(R+r)p−4R^2 r^2 =0  ⇒p=((−2Rr(R+r)+4Rr(√(2Rr)))/(6Rr−R^2 −r^2 ))  ((yellow area)/(green  area))=((R/r))^2 =((2π)/(π/2))=4 ⇒R=2r  ⇒p=((4r)/7)  ((pink area)/(green  area))=((p/r))^2 =((4/7))^2 =((16)/(49))  ⇒pink area =((16)/(49))×(π/2)=((8π)/(49)) ✓
$${R}={radius}\:{of}\:{yellow}\:{semicircle} \\ $$$${r}={radius}\:{of}\:{green}\:{semicircle} \\ $$$${p}={radius}\:{of}\:{pink}\:{semicircle} \\ $$$$\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} }=\sqrt{\left({R}+{p}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} }+\sqrt{\left({r}+{p}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\mathrm{2}\sqrt{{Rr}}=\sqrt{{p}\left(\mathrm{2}{R}+{p}\right)}+\sqrt{{p}\left(\mathrm{2}{r}+{p}\right)} \\ $$$$\mathrm{2}\sqrt{{Rr}}−\sqrt{{p}\left(\mathrm{2}{R}+{p}\right)}=\sqrt{{p}\left(\mathrm{2}{r}+{p}\right)} \\ $$$$\mathrm{2}{Rr}+\left({R}−{r}\right){p}=\mathrm{2}\sqrt{{Rrp}\left(\mathrm{2}{R}+{p}\right)} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} {r}^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{4}{Rr}\left({R}−{r}\right){p}=\mathrm{4}{Rrp}\left(\mathrm{2}{R}+{p}\right) \\ $$$$\Rightarrow\left(\mathrm{6}{Rr}−{R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right){p}^{\mathrm{2}} +\mathrm{4}{Rr}\left({R}+{r}\right){p}−\mathrm{4}{R}^{\mathrm{2}} {r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{−\mathrm{2}{Rr}\left({R}+{r}\right)+\mathrm{4}{Rr}\sqrt{\mathrm{2}{Rr}}}{\mathrm{6}{Rr}−{R}^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\frac{{yellow}\:{area}}{{green}\:\:{area}}=\left(\frac{{R}}{{r}}\right)^{\mathrm{2}} =\frac{\mathrm{2}\pi}{\pi/\mathrm{2}}=\mathrm{4}\:\Rightarrow{R}=\mathrm{2}{r} \\ $$$$\Rightarrow{p}=\frac{\mathrm{4}{r}}{\mathrm{7}} \\ $$$$\frac{{pink}\:{area}}{{green}\:\:{area}}=\left(\frac{{p}}{{r}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{4}}{\mathrm{7}}\right)^{\mathrm{2}} =\frac{\mathrm{16}}{\mathrm{49}} \\ $$$$\Rightarrow{pink}\:{area}\:=\frac{\mathrm{16}}{\mathrm{49}}×\frac{\pi}{\mathrm{2}}=\frac{\mathrm{8}\pi}{\mathrm{49}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *