Menu Close

Determiner-x-




Question Number 197719 by a.lgnaoui last updated on 27/Sep/23
Determiner    x
$$\mathrm{Determiner}\:\:\:\:\boldsymbol{\mathrm{x}} \\ $$
Commented by a.lgnaoui last updated on 27/Sep/23
Commented by som(math1967) last updated on 27/Sep/23
Commented by som(math1967) last updated on 27/Sep/23
let rad of circle=r  O is centre of circle  ABCD rectangle O is point   in the rectangle  ∴OB^2 +OD^2 =OC^2 +OA^2   ⇒7^2 +r^2 +x^2 +r^2 =17^2 +r^2 +11^2 +r^2   ⇒x^2 =17^2 −7^2 +121  ∴x=(√(361))=19   b) 19
$${let}\:{rad}\:{of}\:{circle}={r} \\ $$$${O}\:{is}\:{centre}\:{of}\:{circle} \\ $$$${ABCD}\:{rectangle}\:{O}\:{is}\:{point}\: \\ $$$${in}\:{the}\:{rectangle} \\ $$$$\therefore{OB}^{\mathrm{2}} +{OD}^{\mathrm{2}} ={OC}^{\mathrm{2}} +{OA}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{7}^{\mathrm{2}} +{r}^{\mathrm{2}} +{x}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{17}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{11}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\mathrm{17}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} +\mathrm{121} \\ $$$$\therefore{x}=\sqrt{\mathrm{361}}=\mathrm{19} \\ $$$$\left.\:{b}\right)\:\mathrm{19} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *