Question Number 197784 by cortano12 last updated on 28/Sep/23
$$\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}+\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\right)}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{5}+\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\left(\mathrm{1}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\right)}\:=\:\mathrm{5} \\ $$
Answered by Frix last updated on 28/Sep/23
$$\mathrm{Let}\:{x}={t}^{\mathrm{3}} +\mathrm{3} \\ $$$$\sqrt[{\mathrm{3}}]{\left({t}+\mathrm{1}\right)^{\mathrm{3}} }+\sqrt[{\mathrm{3}}]{{t}^{\mathrm{3}} +\mathrm{12}{t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{8}}=\mathrm{5} \\ $$$$\sqrt[{\mathrm{3}}]{{t}^{\mathrm{3}} +\mathrm{12}{t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{8}}=−{t}+\mathrm{4} \\ $$$${t}^{\mathrm{3}} +\mathrm{27}{t}−\mathrm{28}=\mathrm{0} \\ $$$$\left({t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +{t}+\mathrm{28}\right)=\mathrm{0} \\ $$$${t}=\mathrm{1} \\ $$$${x}=\mathrm{4} \\ $$