Menu Close

for-a-n-be-a-sequence-of-positive-real-numbers-such-that-a-1-1-a-n-1-2-2a-n-a-n-1-a-n-0-n-1-than-the-sum-of-series-n-1-a-n-3-n-lies-in-the-interval-A-




Question Number 198304 by universe last updated on 17/Oct/23
   for {a_n } be a sequence of positive real numbers     such that  a_1 =1 , a_(n+1) ^2 −2a_n a_(n+1) −a_n  = 0 , ∀ n≥ 1     than the sum of series Σ_(n=1) ^∞  (a_n /3^(n ) )  lies in the interval    (A)  (1,2]    (B)  (2,3]    (C)  (3,4]    (D)  (4,5]
$$\:\:\:\mathrm{for}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{be}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\:\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:,\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{2a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}+\mathrm{1}} −\mathrm{a}_{\mathrm{n}} \:=\:\mathrm{0}\:,\:\forall\:\mathrm{n}\geqslant\:\mathrm{1} \\ $$$$\:\:\:\mathrm{than}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{a}_{\mathrm{n}} }{\mathrm{3}^{\mathrm{n}\:} }\:\:\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\:\:\left({A}\right)\:\:\left(\mathrm{1},\mathrm{2}\right]\:\:\:\:\left({B}\right)\:\:\left(\mathrm{2},\mathrm{3}\right]\:\:\:\:\left({C}\right)\:\:\left(\mathrm{3},\mathrm{4}\right]\:\:\:\:\left({D}\right)\:\:\left(\mathrm{4},\mathrm{5}\right] \\ $$$$\:\:\:\: \\ $$
Commented by Frix last updated on 17/Oct/23
a_(n+1) =a_n +(√(a_n ^2 +a_n )) ⇒ a_n  is strictly increasing  a_(n+1) ∼2a_n +(1/2) for great n ∧ a_(n+1) <2a_n +(1/2)∀n∈N  b_(n+1) =2b_n +(1/2)∧b_1 =1 ⇒ b_n =((2^n 3−2)/4)  a_n <b_n   Σ_(n≥1)  (b_n /3^n ) =lim_(n→∞)  ((5/4)+(1/(3^n 4))−(2^(n−1) /3^(n−1) )) =(5/4)  ⇒  Σ_(n≥1)  (a_n /3^n ) <(5/4)
$${a}_{{n}+\mathrm{1}} ={a}_{{n}} +\sqrt{{a}_{{n}} ^{\mathrm{2}} +{a}_{{n}} }\:\Rightarrow\:{a}_{{n}} \:\mathrm{is}\:\mathrm{strictly}\:\mathrm{increasing} \\ $$$${a}_{{n}+\mathrm{1}} \sim\mathrm{2}{a}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{for}\:\mathrm{great}\:{n}\:\wedge\:{a}_{{n}+\mathrm{1}} <\mathrm{2}{a}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\forall{n}\in\mathbb{N} \\ $$$${b}_{{n}+\mathrm{1}} =\mathrm{2}{b}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\wedge{b}_{\mathrm{1}} =\mathrm{1}\:\Rightarrow\:{b}_{{n}} =\frac{\mathrm{2}^{{n}} \mathrm{3}−\mathrm{2}}{\mathrm{4}} \\ $$$${a}_{{n}} <{b}_{{n}} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{{b}_{{n}} }{\mathrm{3}^{{n}} }\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{5}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{3}^{{n}} \mathrm{4}}−\frac{\mathrm{2}^{{n}−\mathrm{1}} }{\mathrm{3}^{{n}−\mathrm{1}} }\right)\:=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\Rightarrow \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }\:<\frac{\mathrm{5}}{\mathrm{4}} \\ $$
Commented by Frix last updated on 17/Oct/23
Same path with b_2 =1+(√2)=a_2  ⇒ Σ_(n≥1)  (a_n /3^n ) <(3/4)+((√2)/3)
$$\mathrm{Same}\:\mathrm{path}\:\mathrm{with}\:{b}_{\mathrm{2}} =\mathrm{1}+\sqrt{\mathrm{2}}={a}_{\mathrm{2}} \:\Rightarrow\:\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }\:<\frac{\mathrm{3}}{\mathrm{4}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 17/Oct/23
a_n =(1/(2^(1/2^(n−1) ) −1))
$${a}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }} −\mathrm{1}} \\ $$
Commented by universe last updated on 17/Oct/23
sir how to find this result ?
$${sir}\:{how}\:{to}\:{find}\:{this}\:{result}\:? \\ $$
Commented by mr W last updated on 17/Oct/23
a_(n+1) ^2 −2a_(n+1) a_n −a_n =0  ((1/a_(n+1) ))^2 +(2/a_(n+1) )−(1/a_n )  let b_n =(1/a_n )  b_(n+1) ^2 +2b_(n+1) −b_n =0  b_(n+1) =−1+(√(1+b_n ))  b_(n+1) +1=(√(b_n +1))  let c_n =b_n +1=(1/a_n )+1  ⇒c_(n+1) =c_n ^(1/2)   ⇒c_n =(c_(n−1) )^(1/2) =(c_(n−2) )^(1/2^2 ) =...=c_1 ^(1/2^(n−1) )   c_1 =(1/a_1 )+1=(1/1)+1=2  ⇒c_n =2^(1/2^(n−1) ) =(1/a_n )+1  ⇒a_n =(1/(2^(1/2^(n−1) ) −1))
$${a}_{{n}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{a}_{{n}+\mathrm{1}} {a}_{{n}} −{a}_{{n}} =\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{a}_{{n}+\mathrm{1}} }\right)^{\mathrm{2}} +\frac{\mathrm{2}}{{a}_{{n}+\mathrm{1}} }−\frac{\mathrm{1}}{{a}_{{n}} } \\ $$$${let}\:{b}_{{n}} =\frac{\mathrm{1}}{{a}_{{n}} } \\ $$$${b}_{{n}+\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}{b}_{{n}+\mathrm{1}} −{b}_{{n}} =\mathrm{0} \\ $$$${b}_{{n}+\mathrm{1}} =−\mathrm{1}+\sqrt{\mathrm{1}+{b}_{{n}} } \\ $$$${b}_{{n}+\mathrm{1}} +\mathrm{1}=\sqrt{{b}_{{n}} +\mathrm{1}} \\ $$$${let}\:{c}_{{n}} ={b}_{{n}} +\mathrm{1}=\frac{\mathrm{1}}{{a}_{{n}} }+\mathrm{1} \\ $$$$\Rightarrow{c}_{{n}+\mathrm{1}} ={c}_{{n}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\Rightarrow{c}_{{n}} =\left({c}_{{n}−\mathrm{1}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\left({c}_{{n}−\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }} =…={c}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }} \\ $$$${c}_{\mathrm{1}} =\frac{\mathrm{1}}{{a}_{\mathrm{1}} }+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}}+\mathrm{1}=\mathrm{2} \\ $$$$\Rightarrow{c}_{{n}} =\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }} =\frac{\mathrm{1}}{{a}_{{n}} }+\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }} −\mathrm{1}} \\ $$
Commented by Frix last updated on 18/Oct/23
Nice!  This can be written as  a_n =Σ_(k=0) ^(2^(n−1) −1)  2^(k/2^(n−1) )   a_1 =2^(0/1) =1  a_2 =2^(0/2) +2^(1/2)   a_3 =2^(0/4) +2^(1/4) +2^(2/4) +2^(3/4)   a_4 =2^(0/8) +2^(1/8) +2^(2/8) +2^(3/8) +2^(4/8) +2^(5/8) +2^(6/8) +2^(7/8)   ...
$$\mathrm{Nice}! \\ $$$$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as} \\ $$$${a}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}} {\sum}}\:\mathrm{2}^{\frac{{k}}{\mathrm{2}^{{n}−\mathrm{1}} }} \\ $$$${a}_{\mathrm{1}} =\mathrm{2}^{\frac{\mathrm{0}}{\mathrm{1}}} =\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{2}^{\frac{\mathrm{0}}{\mathrm{2}}} +\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${a}_{\mathrm{3}} =\mathrm{2}^{\frac{\mathrm{0}}{\mathrm{4}}} +\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{4}}} +\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${a}_{\mathrm{4}} =\mathrm{2}^{\frac{\mathrm{0}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{5}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{6}}{\mathrm{8}}} +\mathrm{2}^{\frac{\mathrm{7}}{\mathrm{8}}} \\ $$$$… \\ $$
Commented by universe last updated on 18/Oct/23
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *