Menu Close

Find-the-value-of-x-x-2-16-x-please-help-with-workings-




Question Number 6726 by Tawakalitu. last updated on 16/Jul/16
Find the value of x    x^2  = 16^x     please help with workings.
$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$$ \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{16}^{{x}} \\ $$$$ \\ $$$${please}\:{help}\:{with}\:{workings}. \\ $$
Answered by sou1618 last updated on 17/Jul/16
x^2 =16^x →(∗)  x^2 =(4^x )^2   ∣x∣=4^x (∵4^x >0)  set  f(x)=4^x −∣x∣    when x>=0      f ′(x)=(log_e 4)×4^x −1>0      f(0)=1     ∴f(0)>0 ⇒(∗)has no solution    when x<0     f ′(x)=(log_e 4)×4^x +1>0     f(0)=1     lim_(x→−∞) f(x)=−∞    ⇒(∗)has only one solution      −x=4^x      (−x)^(1/x) =4     4= 2^2  =((1/2))^(−2)       { ((−x=1/2)),(((1/x)=−2)) :}   x=−(1/2)
$${x}^{\mathrm{2}} =\mathrm{16}^{{x}} \rightarrow\left(\ast\right) \\ $$$${x}^{\mathrm{2}} =\left(\mathrm{4}^{{x}} \right)^{\mathrm{2}} \\ $$$$\mid{x}\mid=\mathrm{4}^{{x}} \left(\because\mathrm{4}^{{x}} >\mathrm{0}\right) \\ $$$$\mathrm{set} \\ $$$${f}\left({x}\right)=\mathrm{4}^{{x}} −\mid{x}\mid \\ $$$$ \\ $$$$\mathrm{when}\:{x}>=\mathrm{0} \\ $$$$\:\:\:\:{f}\:'\left({x}\right)=\left({log}_{{e}} \mathrm{4}\right)×\mathrm{4}^{{x}} −\mathrm{1}>\mathrm{0} \\ $$$$\:\:\:\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\:\:\:\therefore{f}\left(\mathrm{0}\right)>\mathrm{0}\:\Rightarrow\left(\ast\right)\mathrm{has}\:\mathrm{no}\:\mathrm{solution} \\ $$$$ \\ $$$$\mathrm{when}\:{x}<\mathrm{0} \\ $$$$\:\:\:{f}\:'\left({x}\right)=\left({log}_{{e}} \mathrm{4}\right)×\mathrm{4}^{{x}} +\mathrm{1}>\mathrm{0} \\ $$$$\:\:\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right)=−\infty \\ $$$$\:\:\Rightarrow\left(\ast\right)\mathrm{has}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution} \\ $$$$\:\:\:\:−{x}=\mathrm{4}^{{x}} \\ $$$$\:\:\:\left(−{x}\right)^{\frac{\mathrm{1}}{{x}}} =\mathrm{4} \\ $$$$\:\:\:\mathrm{4}=\:\mathrm{2}^{\mathrm{2}} \:=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{−\mathrm{2}} \: \\ $$$$\:\:\begin{cases}{−{x}=\mathrm{1}/\mathrm{2}}\\{\frac{\mathrm{1}}{{x}}=−\mathrm{2}}\end{cases} \\ $$$$\:{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Tawakalitu. last updated on 17/Jul/16
Thanks so much.
$${Thanks}\:{so}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *