Question-199164 Tinku Tara October 28, 2023 Matrices and Determinants 1 Comment FacebookTweetPin Question Number 199164 by mnjuly1970 last updated on 28/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-199165Next Next post: Question-199175 1 Comment KAMIL ADEN KAMIL January 30, 2024 at 9:17 am Reply To find the value of (I – 2A)^-1 + (I + 2A)^-1, we first need to find the inverse of (I – 2A) and (I + 2A). Let’s start with finding the inverse of (I – 2A): (I – 2A)^-1 = 1/(det(I – 2A)) * adj(I – 2A) where det(I – 2A) is the determinant of (I – 2A) and adj(I – 2A) is the adjugate of (I – 2A). det(I – 2A) = |(1-2), -2, -4| = -3 |-1, (3-2), 4| |1, -2, (-3-2)| adj(I – 2A) = |(3-2), 4| = |1, 4| |-2, (-3-2)| |-2, -5| So, (I – 2A)^-1 = -1/3 * |1, 4| |-2, -5| Now, let’s find the inverse of (I + 2A): (I + 2A)^-1 = 1/(det(I + 2A)) * adj(I + 2A) where det(I + 2A) is the determinant of (I + 2A) and adj(I + 2A) is the adjugate of (I + 2A). det(I + 2A) = |(1+4), -2, -4| = 9 |-1, (3+4), 4| |1, -2, (-3+4)| adj(I + 2A) = |(3+4), 4| = |7, 4| |-2, (-3+4)| |-2, 1| So, (I + 2A)^-1 = 1/9 * |7, 4| |-2, 1| Now we can substitute these values in the original equation: (I – 2A)^-1 + (I + 2A)^-1 = (-1/3 * |1, 4|) + (1/9 * |7, 4|) |-2, -5| |-2, 1| = (-1/3 * 1 + 1/9 * 7) (-1/3 * 4 + 1/9 * 4) (-1/3 * -2 + 1/9 * -2) (-1/3 * -5 + 1/9 * 1) = (2/9) (-4/9) (2/9) (-17/27) = |2/9, -4/9| |2/9, -17/27| Therefore, the value of (I – 2A)^-1 + (I + 2A)^-1 is |2/9, -4/9| |2/9, -17/27|. Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.
KAMIL ADEN KAMIL January 30, 2024 at 9:17 am Reply To find the value of (I – 2A)^-1 + (I + 2A)^-1, we first need to find the inverse of (I – 2A) and (I + 2A). Let’s start with finding the inverse of (I – 2A): (I – 2A)^-1 = 1/(det(I – 2A)) * adj(I – 2A) where det(I – 2A) is the determinant of (I – 2A) and adj(I – 2A) is the adjugate of (I – 2A). det(I – 2A) = |(1-2), -2, -4| = -3 |-1, (3-2), 4| |1, -2, (-3-2)| adj(I – 2A) = |(3-2), 4| = |1, 4| |-2, (-3-2)| |-2, -5| So, (I – 2A)^-1 = -1/3 * |1, 4| |-2, -5| Now, let’s find the inverse of (I + 2A): (I + 2A)^-1 = 1/(det(I + 2A)) * adj(I + 2A) where det(I + 2A) is the determinant of (I + 2A) and adj(I + 2A) is the adjugate of (I + 2A). det(I + 2A) = |(1+4), -2, -4| = 9 |-1, (3+4), 4| |1, -2, (-3+4)| adj(I + 2A) = |(3+4), 4| = |7, 4| |-2, (-3+4)| |-2, 1| So, (I + 2A)^-1 = 1/9 * |7, 4| |-2, 1| Now we can substitute these values in the original equation: (I – 2A)^-1 + (I + 2A)^-1 = (-1/3 * |1, 4|) + (1/9 * |7, 4|) |-2, -5| |-2, 1| = (-1/3 * 1 + 1/9 * 7) (-1/3 * 4 + 1/9 * 4) (-1/3 * -2 + 1/9 * -2) (-1/3 * -5 + 1/9 * 1) = (2/9) (-4/9) (2/9) (-17/27) = |2/9, -4/9| |2/9, -17/27| Therefore, the value of (I – 2A)^-1 + (I + 2A)^-1 is |2/9, -4/9| |2/9, -17/27|.
To find the value of (I – 2A)^-1 + (I + 2A)^-1, we first need to find the inverse of (I – 2A) and (I + 2A).
Let’s start with finding the inverse of (I – 2A):
(I – 2A)^-1 = 1/(det(I – 2A)) * adj(I – 2A)
where det(I – 2A) is the determinant of (I – 2A) and adj(I – 2A) is the adjugate of (I – 2A).
det(I – 2A) = |(1-2), -2, -4| = -3
|-1, (3-2), 4|
|1, -2, (-3-2)|
adj(I – 2A) = |(3-2), 4| = |1, 4|
|-2, (-3-2)| |-2, -5|
So, (I – 2A)^-1 = -1/3 * |1, 4|
|-2, -5|
Now, let’s find the inverse of (I + 2A):
(I + 2A)^-1 = 1/(det(I + 2A)) * adj(I + 2A)
where det(I + 2A) is the determinant of (I + 2A) and adj(I + 2A) is the adjugate of (I + 2A).
det(I + 2A) = |(1+4), -2, -4| = 9
|-1, (3+4), 4|
|1, -2, (-3+4)|
adj(I + 2A) = |(3+4), 4| = |7, 4|
|-2, (-3+4)| |-2, 1|
So, (I + 2A)^-1 = 1/9 * |7, 4|
|-2, 1|
Now we can substitute these values in the original equation:
(I – 2A)^-1 + (I + 2A)^-1 = (-1/3 * |1, 4|) + (1/9 * |7, 4|)
|-2, -5| |-2, 1|
= (-1/3 * 1 + 1/9 * 7) (-1/3 * 4 + 1/9 * 4)
(-1/3 * -2 + 1/9 * -2) (-1/3 * -5 + 1/9 * 1)
= (2/9) (-4/9)
(2/9) (-17/27)
= |2/9, -4/9|
|2/9, -17/27|
Therefore, the value of (I – 2A)^-1 + (I + 2A)^-1 is |2/9, -4/9|
|2/9, -17/27|.