Menu Close

Let-f-x-x-2-2x-3-x-1-amp-g-x-1-x-4-x-4-then-the-number-of-real-solutions-of-equation-f-x-g-x-is-




Question Number 137817 by bramlexs22 last updated on 07/Apr/21
Let f(x)=x^2 −2x−3; x≥1 &  g(x)=1+(√(x+4)) ; x≥−4 then  the number of real solutions  of equation f(x)=g(x) is ...
$${Let}\:{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3};\:{x}\geqslant\mathrm{1}\:\& \\ $$$${g}\left({x}\right)=\mathrm{1}+\sqrt{{x}+\mathrm{4}}\:;\:{x}\geqslant−\mathrm{4}\:{then} \\ $$$${the}\:{number}\:{of}\:{real}\:{solutions} \\ $$$${of}\:{equation}\:{f}\left({x}\right)={g}\left({x}\right)\:{is}\:… \\ $$
Answered by MJS_new last updated on 07/Apr/21
x^2 −2x−3=1+(√(x+4))  x^2 −2x−4=(√(x+4))  (x^2 −2x−4)^2 =x+4  x^4 −4x^3 −4x^2 +15x+12=0  I found no “nice” exact solution  of the 4 solutions only 2 solve the given equation  x_1 ≈−1.56155  x_2 ≈3.79129  but because of x≥1 the only solution is x_2
$${x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}=\mathrm{1}+\sqrt{{x}+\mathrm{4}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}=\sqrt{{x}+\mathrm{4}} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}\right)^{\mathrm{2}} ={x}+\mathrm{4} \\ $$$${x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{15}{x}+\mathrm{12}=\mathrm{0} \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{no}\:“\mathrm{nice}''\:\mathrm{exact}\:\mathrm{solution} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{4}\:\mathrm{solutions}\:\mathrm{only}\:\mathrm{2}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation} \\ $$$${x}_{\mathrm{1}} \approx−\mathrm{1}.\mathrm{56155} \\ $$$${x}_{\mathrm{2}} \approx\mathrm{3}.\mathrm{79129} \\ $$$$\mathrm{but}\:\mathrm{because}\:\mathrm{of}\:{x}\geqslant\mathrm{1}\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{is}\:{x}_{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *