Menu Close

By-strong-induction-prove-that-any-natural-number-equal-to-or-bigger-than-8-can-be-written-as-3a-5b-where-a-and-b-are-non-negative-integers-




Question Number 200041 by depressiveshrek last updated on 12/Nov/23
By strong induction prove that any  natural number equal to or bigger than  8 can be written as 3a+5b where a and b  are non−negative integers.
$${By}\:{strong}\:{induction}\:{prove}\:{that}\:{any} \\ $$$${natural}\:{number}\:{equal}\:{to}\:{or}\:{bigger}\:{than} \\ $$$$\mathrm{8}\:{can}\:{be}\:{written}\:{as}\:\mathrm{3}{a}+\mathrm{5}{b}\:{where}\:{a}\:{and}\:{b} \\ $$$${are}\:{non}−{negative}\:{integers}. \\ $$
Answered by des_ last updated on 12/Nov/23
n ≥ 8 ⇒ n = 3a + 5b, a,b ≥ 0;    1) n = 8:  n = 3(1) + 5(1)    2) n ⇒ n + 1:  2.1) n = 3a + 5b, b > 0:  n + 1 = 3a + 5b + 1 = 3(a + 2) + 5(b − 1);  2.2) n = 3a + 5b, b = 0:  n = 3a ⇒ a ≥ 3;  n + 1 = 3a + 1 = 3(a − 3) + 5(2);    Thus n ≥ 8 ⇒ n = 3a + 5b, a,b ≥ 0
$${n}\:\geqslant\:\mathrm{8}\:\Rightarrow\:{n}\:=\:\mathrm{3}{a}\:+\:\mathrm{5}{b},\:{a},{b}\:\geqslant\:\mathrm{0}; \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{n}\:=\:\mathrm{8}: \\ $$$${n}\:=\:\mathrm{3}\left(\mathrm{1}\right)\:+\:\mathrm{5}\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{n}\:\Rightarrow\:{n}\:+\:\mathrm{1}: \\ $$$$\left.\mathrm{2}.\mathrm{1}\right)\:{n}\:=\:\mathrm{3}{a}\:+\:\mathrm{5}{b},\:{b}\:>\:\mathrm{0}: \\ $$$${n}\:+\:\mathrm{1}\:=\:\mathrm{3}{a}\:+\:\mathrm{5}{b}\:+\:\mathrm{1}\:=\:\mathrm{3}\left({a}\:+\:\mathrm{2}\right)\:+\:\mathrm{5}\left({b}\:−\:\mathrm{1}\right); \\ $$$$\left.\mathrm{2}.\mathrm{2}\right)\:{n}\:=\:\mathrm{3}{a}\:+\:\mathrm{5}{b},\:{b}\:=\:\mathrm{0}: \\ $$$${n}\:=\:\mathrm{3}{a}\:\Rightarrow\:{a}\:\geqslant\:\mathrm{3}; \\ $$$${n}\:+\:\mathrm{1}\:=\:\mathrm{3}{a}\:+\:\mathrm{1}\:=\:\mathrm{3}\left({a}\:−\:\mathrm{3}\right)\:+\:\mathrm{5}\left(\mathrm{2}\right); \\ $$$$ \\ $$$${Thus}\:{n}\:\geqslant\:\mathrm{8}\:\Rightarrow\:{n}\:=\:\mathrm{3}{a}\:+\:\mathrm{5}{b},\:{a},{b}\:\geqslant\:\mathrm{0} \\ $$
Answered by witcher3 last updated on 12/Nov/23
show for n∈[8,16]..By tcheking  for all  16≤k≤n  ⇒P(k) True  p(n+1)  n+1=[((n+1)/2)]_m +(n−[((n+1)/2)])_(=d)   8≤m,d<n  m=3a+5d  d=3a′+5d′  m+d=n=3(a+a′)+5(d+d′)
$$\mathrm{show}\:\mathrm{for}\:\mathrm{n}\in\left[\mathrm{8},\mathrm{16}\right]..\mathrm{By}\:\mathrm{tcheking} \\ $$$$\mathrm{for}\:\mathrm{all}\:\:\mathrm{16}\leqslant\mathrm{k}\leqslant\mathrm{n}\:\:\Rightarrow\mathrm{P}\left(\mathrm{k}\right)\:\mathrm{True} \\ $$$$\mathrm{p}\left(\mathrm{n}+\mathrm{1}\right) \\ $$$$\mathrm{n}+\mathrm{1}=\left[\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right]_{\mathrm{m}} +\left(\mathrm{n}−\left[\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right]\right)_{=\mathrm{d}} \\ $$$$\mathrm{8}\leqslant\mathrm{m},\mathrm{d}<\mathrm{n} \\ $$$$\mathrm{m}=\mathrm{3a}+\mathrm{5d} \\ $$$$\mathrm{d}=\mathrm{3a}'+\mathrm{5d}' \\ $$$$\mathrm{m}+\mathrm{d}=\mathrm{n}=\mathrm{3}\left(\mathrm{a}+\mathrm{a}'\right)+\mathrm{5}\left(\mathrm{d}+\mathrm{d}'\right) \\ $$$$ \\ $$$$ \\ $$
Answered by witcher3 last updated on 12/Nov/23
we can show this easly  n=8k+r  k≥1 for n≥8  r=0,3.0+5.0  r=1=3.2+5(−1)  r=2 5.1+3(−1)  r=3=3.0  r=4=3.3+5(−1)  r=5=5.1+3.0  r=6,3.2+5(0)  r=7,5.2+3(−1)  ∀r∈[0,7]  r=3.a+b.5   min(a,b)≥−1  n=k(3+5)+3a+5b=3(a+k)+5(k+b)  a+k≥k−1≥0  b+k≥k−1≥0..True
$$\mathrm{we}\:\mathrm{can}\:\mathrm{show}\:\mathrm{this}\:\mathrm{easly} \\ $$$$\mathrm{n}=\mathrm{8k}+\mathrm{r} \\ $$$$\mathrm{k}\geqslant\mathrm{1}\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{8} \\ $$$$\mathrm{r}=\mathrm{0},\mathrm{3}.\mathrm{0}+\mathrm{5}.\mathrm{0} \\ $$$$\mathrm{r}=\mathrm{1}=\mathrm{3}.\mathrm{2}+\mathrm{5}\left(−\mathrm{1}\right) \\ $$$$\mathrm{r}=\mathrm{2}\:\mathrm{5}.\mathrm{1}+\mathrm{3}\left(−\mathrm{1}\right) \\ $$$$\mathrm{r}=\mathrm{3}=\mathrm{3}.\mathrm{0} \\ $$$$\mathrm{r}=\mathrm{4}=\mathrm{3}.\mathrm{3}+\mathrm{5}\left(−\mathrm{1}\right) \\ $$$$\mathrm{r}=\mathrm{5}=\mathrm{5}.\mathrm{1}+\mathrm{3}.\mathrm{0} \\ $$$$\mathrm{r}=\mathrm{6},\mathrm{3}.\mathrm{2}+\mathrm{5}\left(\mathrm{0}\right) \\ $$$$\mathrm{r}=\mathrm{7},\mathrm{5}.\mathrm{2}+\mathrm{3}\left(−\mathrm{1}\right) \\ $$$$\forall\mathrm{r}\in\left[\mathrm{0},\mathrm{7}\right] \\ $$$$\mathrm{r}=\mathrm{3}.\mathrm{a}+\mathrm{b}.\mathrm{5}\:\:\:\mathrm{min}\left(\mathrm{a},\mathrm{b}\right)\geqslant−\mathrm{1} \\ $$$$\mathrm{n}=\mathrm{k}\left(\mathrm{3}+\mathrm{5}\right)+\mathrm{3a}+\mathrm{5b}=\mathrm{3}\left(\mathrm{a}+\mathrm{k}\right)+\mathrm{5}\left(\mathrm{k}+\mathrm{b}\right) \\ $$$$\mathrm{a}+\mathrm{k}\geqslant\mathrm{k}−\mathrm{1}\geqslant\mathrm{0} \\ $$$$\mathrm{b}+\mathrm{k}\geqslant\mathrm{k}−\mathrm{1}\geqslant\mathrm{0}..\mathrm{True} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *