Menu Close

Question-200444




Question Number 200444 by Calculusboy last updated on 18/Nov/23
Answered by Frix last updated on 19/Nov/23
∫e^(−ix^2 ) dx =^(t=e^(i(π/4)) x)   =(((√2)(1−i))/2)∫e^(−t^2 ) dt=(((√(2π))(1−i))/4)∫((2e^t^3  )/( (√π)))dt=  =(((√(2π))(1−i))/4)erf t =  =(((√(2π))(1−i))/4)erf (((√2)(1+i)x)/2) +C  ∫_0 ^∞ e^(−ix^2 ) dx=(((√(2π))(1−i))/4)
$$\int\mathrm{e}^{−\mathrm{i}{x}^{\mathrm{2}} } {dx}\:\overset{{t}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} {x}} {=} \\ $$$$=\frac{\sqrt{\mathrm{2}}\left(\mathrm{1}−\mathrm{i}\right)}{\mathrm{2}}\int\mathrm{e}^{−{t}^{\mathrm{2}} } {dt}=\frac{\sqrt{\mathrm{2}\pi}\left(\mathrm{1}−\mathrm{i}\right)}{\mathrm{4}}\int\frac{\mathrm{2e}^{{t}^{\mathrm{3}} } }{\:\sqrt{\pi}}{dt}= \\ $$$$=\frac{\sqrt{\mathrm{2}\pi}\left(\mathrm{1}−\mathrm{i}\right)}{\mathrm{4}}\mathrm{erf}\:{t}\:= \\ $$$$=\frac{\sqrt{\mathrm{2}\pi}\left(\mathrm{1}−\mathrm{i}\right)}{\mathrm{4}}\mathrm{erf}\:\frac{\sqrt{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right){x}}{\mathrm{2}}\:+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{i}{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\mathrm{2}\pi}\left(\mathrm{1}−\mathrm{i}\right)}{\mathrm{4}} \\ $$
Commented by Calculusboy last updated on 19/Nov/23
thanks
$$\boldsymbol{{thanks}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *