Menu Close

0-pi-2-ln-2-sinx-dx-




Question Number 137894 by EnterUsername last updated on 08/Apr/21
∫_0 ^(π/2) ln^2 (sinx)dx
0π2ln2(sinx)dx
Answered by Dwaipayan Shikari last updated on 08/Apr/21
∫_0 ^(π/2) sin^a (x)=((Γ(((a+1)/2))Γ((1/2))  )/(2Γ((a/2)+1)))=τ(a)  τ′′(0)=∫_0 ^(π/2) log^2 (sinx)dx  τ′(0)=∫_0 ^(π/2) log(sinx)dx=−(π/2)log(2)  log(τ(a))=log(Γ(((a+1)/2)))+log((√π)/2)−log(Γ((a/2)+1))  ((τ′(a))/(τ(a)))=(1/2)ψ(((a+1)/2))−ψ((a/2)+1)⇒τ′′(a)=((τ′(a))/2)(ψ(((a+1)/2))−ψ((a/2)+1))+((τ(a))/4)(ψ′(((a+1)/2))−ψ′((a/2)+1))  ⇒τ′′(0)=((τ′(0))/2)(−γ+γ−log(4))+(π/8)((π^2 /2)−(π^2 /6))  =((−π)/2)log(2)(−log(4))+(π^3 /(24))=(π/2)log^2 (2)+(π^3 /(24))
0π2sina(x)=Γ(a+12)Γ(12)2Γ(a2+1)=τ(a)τ(0)=0π2log2(sinx)dxτ(0)=0π2log(sinx)dx=π2log(2)log(τ(a))=log(Γ(a+12))+log(π/2)log(Γ(a2+1))τ(a)τ(a)=12ψ(a+12)ψ(a2+1)τ(a)=τ(a)2(ψ(a+12)ψ(a2+1))+τ(a)4(ψ(a+12)ψ(a2+1))τ(0)=τ(0)2(γ+γlog(4))+π8(π22π26)=π2log(2)(log(4))+π324=π2log2(2)+π324
Commented by Dwaipayan Shikari last updated on 08/Apr/21
May be some error. Trying to do this again
Maybesomeerror.Tryingtodothisagain
Commented by Dwaipayan Shikari last updated on 08/Apr/21
Fixed!
Fixed!
Commented by Dwaipayan Shikari last updated on 08/Apr/21
If  f(α)=Γ((α/2))⇒f′(α)=(1/2)Γ′((α/2))=(1/2)Γ((α/2))ψ((α/2))  From the definition of Digamma function  ((Γ′(α))/(Γ(α)))=ψ(α)=−γ+Σ_(n=0) ^∞ (1/(n+1))−(1/(n+α))
Iff(α)=Γ(α2)f(α)=12Γ(α2)=12Γ(α2)ψ(α2)FromthedefinitionofDigammafunctionΓ(α)Γ(α)=ψ(α)=γ+n=01n+11n+α
Commented by EnterUsername last updated on 08/Apr/21
(π^3 /(24))+((πln^2 2)/2)
π324+πln222
Commented by EnterUsername last updated on 08/Apr/21
Excuse me please, if f(α)=Γ((α/2)) then what is f ′′(α) ?
Excusemeplease,iff(α)=Γ(α2)thenwhatisf(α)?
Commented by EnterUsername last updated on 08/Apr/21
Thanks
Thanks
Commented by EnterUsername last updated on 08/Apr/21
I meant f ′′(α) instead of f ′(α)
Imeantf(α)insteadoff(α)
Commented by Dwaipayan Shikari last updated on 08/Apr/21
Same method  f′(a)=(1/2)Γ((a/2))ψ((a/2)) ⇒f′′(a)=(1/2).(∂/∂a)(Γ((a/2))ψ((a/2)))  =(1/4)Γ′((a/2))ψ((a/2))+(1/4)ψ′((a/2))Γ((a/2))  =(1/4)Γ((a/2))ψ^2 ((a/2))+(1/4)ψ′((a/2))Γ((a/2))
Samemethodf(a)=12Γ(a2)ψ(a2)f(a)=12.a(Γ(a2)ψ(a2))=14Γ(a2)ψ(a2)+14ψ(a2)Γ(a2)=14Γ(a2)ψ2(a2)+14ψ(a2)Γ(a2)
Commented by EnterUsername last updated on 08/Apr/21
Thanks for the inspiration
Thanksfortheinspiration
Answered by EnterUsername last updated on 08/Apr/21
∫_0 ^(π/2) ln^2 (sinx)dx  f(α)=∫_0 ^(π/2) sin^(α−1) xdx=(((√π)Γ((α/2)))/(2Γ(((α+1)/2))))  ln(f(α))=ln(Γ((α/2)))−ln(Γ(((α+1)/2)))+ln(((√π)/2))  ((f ′(α))/(f(α)))=((Γ′((α/2)))/(2Γ((α/2))))−((Γ′(((α+1)/2)))/(2Γ(((α+1)/2))))=(1/2)ψ((α/2))−(1/2)ψ(((α+1)/2))  ln(f ′(α))−ln(f(α))=ln(ψ((α/2))−ψ(((α+1)/2)))−ln2  ((f ′′(α))/(f ′(α)))−((f ′(α))/(f(α)))=(1/2)∙((ψ′((α/2))−ψ′(((α+1)/2)))/(ψ((α/2))−ψ(((α+1)/2))))  f(1)=(π/2) , f ′(1)=((f(1))/2)(ψ((1/2))−ψ(1))=(π/4)(−2ln2)=−((πln2)/2)  ψ′(1)=ζ(2)=(π^2 /6) , ψ′((1/2))=(π^2 /2)  ⇒((2f ′′(1))/(−πln2))+((πln2)/π)=(1/2)∙(((π^2 /2)−(π^2 /6))/(−2ln2)) ⇒−((2f ′′(1))/(πln2))+ln2=−(π^2 /(12ln2))  ⇒∫_0 ^(π/2) ln^2 (sinx)dx=f ′′(1)=((πln^2 2)/2)+(π^3 /(24))
0π2ln2(sinx)dxf(α)=0π2sinα1xdx=πΓ(α2)2Γ(α+12)ln(f(α))=ln(Γ(α2))ln(Γ(α+12))+ln(π2)f(α)f(α)=Γ(α2)2Γ(α2)Γ(α+12)2Γ(α+12)=12ψ(α2)12ψ(α+12)ln(f(α))ln(f(α))=ln(ψ(α2)ψ(α+12))ln2f(α)f(α)f(α)f(α)=12ψ(α2)ψ(α+12)ψ(α2)ψ(α+12)f(1)=π2,f(1)=f(1)2(ψ(12)ψ(1))=π4(2ln2)=πln22ψ(1)=ζ(2)=π26,ψ(12)=π222f(1)πln2+πln2π=12π22π262ln22f(1)πln2+ln2=π212ln20π2ln2(sinx)dx=f(1)=πln222+π324

Leave a Reply

Your email address will not be published. Required fields are marked *