Menu Close

Given-the-series-a-n-3a-n-1-2a-n-2-with-a-1-11-amp-a-2-21-Find-a-n-




Question Number 137899 by bemath last updated on 08/Apr/21
Given the series   a_n = 3a_(n−1) + 2a_(n−2)  with   a_1 =11 & a_2  = 21. Find a_n .
$${Given}\:{the}\:{series}\: \\ $$$${a}_{{n}} =\:\mathrm{3}{a}_{{n}−\mathrm{1}} +\:\mathrm{2}{a}_{{n}−\mathrm{2}} \:{with}\: \\ $$$${a}_{\mathrm{1}} =\mathrm{11}\:\&\:{a}_{\mathrm{2}} \:=\:\mathrm{21}.\:{Find}\:{a}_{{n}} . \\ $$
Answered by benjo_mathlover last updated on 08/Apr/21
characteristics equation  r^2 −3r−2 = 0 ; r=((3±(√(17)))/2)  a_n  = A.(((3+(√(17)))/2))^n +B(((3−(√(17)))/2))^n   with n=1⇒11 = (3/2)(A+B)+((√(17))/2)(A−B)  with n=2⇒21=((13)/2)(A+B)+((3(√(17)))/2)(A−B)  A=(((20−3(√(17)))/( (√(17)) ))) ; B=−(((20+3(√(17)))/( (√(17)))))  ∴ a_n = (((20−3(√(17)))/( (√(17)))))(((3+(√(17)))/2))^n −(((20+3(√(17)))/( (√(17)))))(((3−(√(17)))/2))^n
$${characteristics}\:{equation} \\ $$$${r}^{\mathrm{2}} −\mathrm{3}{r}−\mathrm{2}\:=\:\mathrm{0}\:;\:{r}=\frac{\mathrm{3}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$${a}_{{n}} \:=\:{A}.\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{{n}} +{B}\left(\frac{\mathrm{3}−\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{{n}} \\ $$$${with}\:{n}=\mathrm{1}\Rightarrow\mathrm{11}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\left({A}+{B}\right)+\frac{\sqrt{\mathrm{17}}}{\mathrm{2}}\left({A}−{B}\right) \\ $$$${with}\:{n}=\mathrm{2}\Rightarrow\mathrm{21}=\frac{\mathrm{13}}{\mathrm{2}}\left({A}+{B}\right)+\frac{\mathrm{3}\sqrt{\mathrm{17}}}{\mathrm{2}}\left({A}−{B}\right) \\ $$$${A}=\left(\frac{\mathrm{20}−\mathrm{3}\sqrt{\mathrm{17}}}{\:\sqrt{\mathrm{17}}\:}\right)\:;\:{B}=−\left(\frac{\mathrm{20}+\mathrm{3}\sqrt{\mathrm{17}}}{\:\sqrt{\mathrm{17}}}\right) \\ $$$$\therefore\:{a}_{{n}} =\:\left(\frac{\mathrm{20}−\mathrm{3}\sqrt{\mathrm{17}}}{\:\sqrt{\mathrm{17}}}\right)\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{20}+\mathrm{3}\sqrt{\mathrm{17}}}{\:\sqrt{\mathrm{17}}}\right)\left(\frac{\mathrm{3}−\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *