Question Number 72396 by mathmax by abdo last updated on 28/Oct/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 29/Oct/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{2}}{dx}\:\Rightarrow\mathrm{2}{A}\:=\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} \:+\mathrm{1}}{{x}^{\mathrm{4}\:} +{x}^{\mathrm{2}} \:+\mathrm{2}}{dx} \\ $$$${let}\:{W}\left({z}\right)=\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{{z}^{\mathrm{4}} \:+{z}^{\mathrm{2}} \:+\mathrm{2}}\:\:{poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{4}} \:+{z}^{\mathrm{2}} \:+\mathrm{2}\:=\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} \:+{t}\:+\mathrm{2}\:=\mathrm{0}\:\:{with}\:{t}={z}^{\mathrm{2}} \\ $$$$\Delta=\mathrm{1}−\mathrm{8}\:=−\mathrm{7}\:\Rightarrow{t}_{\mathrm{1}} =\frac{−\mathrm{1}+{i}\sqrt{\mathrm{7}}}{\mathrm{2}}\:{and}\:{t}_{\mathrm{2}} =\frac{−\mathrm{1}−{i}\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\mid{t}_{\mathrm{1}} \mid\:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\mathrm{7}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)=\sqrt{\mathrm{2}}\:\Rightarrow{t}_{\mathrm{1}} =\sqrt{\mathrm{2}}{e}^{−{iarctan}\left(\sqrt{\mathrm{7}}\right)} \\ $$$${t}_{\mathrm{2}} ={conj}\left({t}_{\mathrm{1}} \right)=\sqrt{\mathrm{2}}{e}^{{iarctan}\left(\sqrt{\mathrm{7}}\right)} \:\Rightarrow{W}\left({z}\right)=\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\left({z}^{\mathrm{2}} −\sqrt{\mathrm{2}}{e}^{{iarctan}\left(\sqrt{\mathrm{7}}\right)} \right)\left({z}^{\mathrm{2}} −\sqrt{\mathrm{2}}{e}^{−{iarctan}\left(\sqrt{\mathrm{7}}\right)} \right)} \\ $$$$=\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\left({z}−\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)\left({z}+\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)\left({z}−\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)\left({z}+\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)} \\ $$$$\int_{−\infty} ^{+\infty} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left({W},^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)+{Res}\left({W},−^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right\}\right. \\ $$$$…{be}\:{continued}…. \\ $$
Commented by mathmax by abdo last updated on 30/Oct/19
$${Res}\left({W},^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)=\frac{\mathrm{1}+\sqrt{\mathrm{2}}{e}^{{iarctan}\left(\sqrt{\mathrm{7}}\right)} }{\mathrm{2}^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \left(\sqrt{\mathrm{2}}\right)\left(\mathrm{2}{i}\right){sin}\left({arctan}\left(\sqrt{\mathrm{7}}\right)\right)} \\ $$$$=\frac{\mathrm{1}+\sqrt{\mathrm{2}}{e}^{{iarctan}\left(\sqrt{\mathrm{7}}\right)} }{\left(\mathrm{4}{i}\right)\sqrt{\mathrm{2}}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \:\:{sin}\left({arctan}\sqrt{\mathrm{7}}\right)} \\ $$$${Res}\left({W},−^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)=\frac{\mathrm{1}+\sqrt{\mathrm{2}}{e}^{−{iarctan}\left(\sqrt{\mathrm{7}}\right)} }{−\sqrt{\mathrm{2}}\left(\mathrm{2}{i}\right){sin}\left({arctan}\left(\sqrt{\mathrm{7}}\right)\right)\left(−\mathrm{2}^{\mathrm{4}} \sqrt{\mathrm{2}}{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)} \\ $$$$=\frac{\mathrm{1}+\sqrt{\mathrm{2}}{e}^{−{iarctan}\left(\sqrt{\mathrm{7}}\right)} }{\left(\mathrm{4}{i}\right)\sqrt{\mathrm{2}}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right)\:{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} {sin}\left({arctan}\sqrt{\mathrm{7}}\right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\frac{{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} +\sqrt{\mathrm{2}}{e}^{\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} }{\left(\mathrm{4}{i}\right)\sqrt{\mathrm{2}}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right){sin}\left({arctan}\left(\sqrt{\mathrm{7}}\right)\right.}\right. \\ $$$$\left.+\frac{{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} +\sqrt{\mathrm{2}}\:{e}^{−\frac{{i}}{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{7}}\right)} }{\left(\mathrm{4}{i}\right)\sqrt{\mathrm{2}}\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right)\:{sin}\left({arctan}\sqrt{\mathrm{7}}\right)}\right\}\:\:\:{rest}\:{to}\:{complete}\:{the}\:{calculus}. \\ $$