Menu Close

find-the-ranges-of-value-of-x-for-which-series-convergent-or-divergent-n-1-n-1-n-3-x-n-




Question Number 203329 by Calculusboy last updated on 16/Jan/24
find the ranges of value of x for which   series convergent or divergent  𝚺_(n=1) ^∞ (((n+1))/n^3 )x^n
$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{ranges}}\:\boldsymbol{{of}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}\:\boldsymbol{{for}}\:\boldsymbol{{which}}\: \\ $$$$\boldsymbol{{series}}\:\boldsymbol{{convergent}}\:\boldsymbol{{or}}\:\boldsymbol{{divergent}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(\boldsymbol{{n}}+\mathrm{1}\right)}{\boldsymbol{{n}}^{\mathrm{3}} }\boldsymbol{{x}}^{\boldsymbol{{n}}} \\ $$
Answered by Mathspace last updated on 17/Jan/24
u_n (x)=((n+1)/n^3 )x^n   ∣((u_(n+1) (x))/(u_n (x)))∣=∣((((n+2)/((n+1)^3 ))x^(n+1) )/(((n+1)/n^3 )x^n ))∣  =((n+2)/((n+1)^3 ))×(n^3 /(n+1))∣x∣  =((n/(n+1)))^3 .((n+2)/(n+1))∣x∣→∣x∣(n→+∞)  si ∣x∣<1 the serie cv and r=1  si ∣x∣>1 the serie diverges  ifx=1 u_n (x)=((n+1)/n^3 )∼(1/n^2 )  Σ(1/n^2 )cv ⇒Σu_n (x) cv  if=x=−1  u_n (x)=(((n+1))/n^3 )(−1)^n   Σu_n (x)is a alternating serie  ⇒Σu_n (x) cv.
$${u}_{{n}} \left({x}\right)=\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} }{x}^{{n}} \\ $$$$\mid\frac{{u}_{{n}+\mathrm{1}} \left({x}\right)}{{u}_{{n}} \left({x}\right)}\mid=\mid\frac{\frac{{n}+\mathrm{2}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }{x}^{{n}+\mathrm{1}} }{\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} }{x}^{{n}} }\mid \\ $$$$=\frac{{n}+\mathrm{2}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }×\frac{{n}^{\mathrm{3}} }{{n}+\mathrm{1}}\mid{x}\mid \\ $$$$=\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{\mathrm{3}} .\frac{{n}+\mathrm{2}}{{n}+\mathrm{1}}\mid{x}\mid\rightarrow\mid{x}\mid\left({n}\rightarrow+\infty\right) \\ $$$${si}\:\mid{x}\mid<\mathrm{1}\:{the}\:{serie}\:{cv}\:{and}\:{r}=\mathrm{1} \\ $$$${si}\:\mid{x}\mid>\mathrm{1}\:{the}\:{serie}\:{diverges} \\ $$$${ifx}=\mathrm{1}\:{u}_{{n}} \left({x}\right)=\frac{{n}+\mathrm{1}}{{n}^{\mathrm{3}} }\sim\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\Sigma\frac{\mathrm{1}}{{n}^{\mathrm{2}} }{cv}\:\Rightarrow\Sigma{u}_{{n}} \left({x}\right)\:{cv} \\ $$$${if}={x}=−\mathrm{1}\:\:{u}_{{n}} \left({x}\right)=\frac{\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{3}} }\left(−\mathrm{1}\right)^{{n}} \\ $$$$\Sigma{u}_{{n}} \left({x}\right){is}\:{a}\:{alternating}\:{serie} \\ $$$$\Rightarrow\Sigma{u}_{{n}} \left({x}\right)\:{cv}. \\ $$$$ \\ $$
Commented by Calculusboy last updated on 17/Jan/24
nice sir
$$\boldsymbol{{nice}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *