Question Number 203688 by ajfour last updated on 26/Jan/24
Commented by ajfour last updated on 26/Jan/24
$${Repost}\:\:\:{Q}.\mathrm{203636}\: \\ $$
Commented by ajfour last updated on 26/Jan/24
$${Looks}\:{suuperB}!\:\:{waiting}\:{for}\:{you}\:{to} \\ $$$${elaborate},\:{gracious}. \\ $$
Commented by mr W last updated on 27/Jan/24
$${i}\:{think}\:{i}\:{got}\:{it},\:{easier}\:{than}\:{i}\:{thought}, \\ $$$$\frac{{T}_{{A}} }{{mg}}=\frac{{a}}{\:\left[\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}}+\frac{\mu^{\mathrm{4}} }{\mathrm{9}}}+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{6}}}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}}+\frac{\mu^{\mathrm{4}} }{\mathrm{9}}}−\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{6}}}\right]^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${with}\:\mu=\sqrt{\frac{{kQ}^{\mathrm{2}} }{{mg}}} \\ $$$${i}\:{hope}\:{you}\:{may}\:{comfirm}\:{this}. \\ $$