Menu Close

what-is-the-area-of-the-largest-square-that-can-be-enclosed-in-a-triangle-with-an-area-of-1-




Question Number 204081 by esmaeil last updated on 05/Feb/24
what is the area of the largest square  that can be enclosed in a triangle  with an area of 1?
$${what}\:{is}\:{the}\:{area}\:{of}\:{the}\:{largest}\:{square} \\ $$$${that}\:{can}\:{be}\:{enclosed}\:{in}\:{a}\:{triangle} \\ $$$${with}\:{an}\:{area}\:{of}\:\mathrm{1}? \\ $$
Answered by mr W last updated on 06/Feb/24
Commented by mr W last updated on 06/Feb/24
area of ABC=Δ=1  Δ=((ah_a )/2)  (s_a /a)=((h_a −s_a )/h_a )  s_a =((ah_a )/(a+h_a ))=((2Δ)/(a+((2Δ)/a)))≤((2Δ)/(2(√(2Δ))))=(√(Δ/2))  s_a ^2 ≤(Δ/2)  ⇒ (s_a ^2 )_(max) =(Δ/2)=(1/2)  when a=((2Δ)/a), i.e. a=(√(2Δ))=h_a   similarly (s_b ^2 )_(max) =(Δ/2), (s_c ^2 )_(max) =(Δ/2).  ⇒area of largest inscribed square   is (Δ/2)=(1/2).
$${area}\:{of}\:{ABC}=\Delta=\mathrm{1} \\ $$$$\Delta=\frac{{ah}_{{a}} }{\mathrm{2}} \\ $$$$\frac{{s}_{{a}} }{{a}}=\frac{{h}_{{a}} −{s}_{{a}} }{{h}_{{a}} } \\ $$$${s}_{{a}} =\frac{{ah}_{{a}} }{{a}+{h}_{{a}} }=\frac{\mathrm{2}\Delta}{{a}+\frac{\mathrm{2}\Delta}{{a}}}\leqslant\frac{\mathrm{2}\Delta}{\mathrm{2}\sqrt{\mathrm{2}\Delta}}=\sqrt{\frac{\Delta}{\mathrm{2}}} \\ $$$${s}_{{a}} ^{\mathrm{2}} \leqslant\frac{\Delta}{\mathrm{2}} \\ $$$$\Rightarrow\:\left({s}_{{a}} ^{\mathrm{2}} \right)_{{max}} =\frac{\Delta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${when}\:{a}=\frac{\mathrm{2}\Delta}{{a}},\:{i}.{e}.\:{a}=\sqrt{\mathrm{2}\Delta}={h}_{{a}} \\ $$$${similarly}\:\left({s}_{{b}} ^{\mathrm{2}} \right)_{{max}} =\frac{\Delta}{\mathrm{2}},\:\left({s}_{{c}} ^{\mathrm{2}} \right)_{{max}} =\frac{\Delta}{\mathrm{2}}. \\ $$$$\Rightarrow{area}\:{of}\:{largest}\:{inscribed}\:{square}\: \\ $$$${is}\:\frac{\Delta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}. \\ $$
Commented by esmaeil last updated on 06/Feb/24
 ⋛
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *