Menu Close

Question-204405




Question Number 204405 by mathdave last updated on 16/Feb/24
Commented by mathdave last updated on 16/Feb/24
pls someone should me out
$${pls}\:{someone}\:{should}\:{me}\:{out}\: \\ $$
Answered by mr W last updated on 16/Feb/24
Commented by mr W last updated on 16/Feb/24
N_1 +T sin θ=G_1   T cos θ=f_1   with f_1 =μN_1   N_1 +G_2 =N_2   P=f_1 +f_2   with f_2 =μN_2     N_1 =G_1 −T sin θ=G_1 −f_1  tan θ=G_1 −μN_1  tan θ  ⇒N_1 =(G_1 /(1+μ tan θ))  N_2 =G_2 +(G_1 /(1+μ tan θ))  P=μ(G_2 +((2G_1 )/(1+μ tan θ)))     =0.3(2+((2×1)/(1+0.3×tan 30°)))≈1.11 KN
$${N}_{\mathrm{1}} +{T}\:\mathrm{sin}\:\theta={G}_{\mathrm{1}} \\ $$$${T}\:\mathrm{cos}\:\theta={f}_{\mathrm{1}} \:\:{with}\:{f}_{\mathrm{1}} =\mu{N}_{\mathrm{1}} \\ $$$${N}_{\mathrm{1}} +{G}_{\mathrm{2}} ={N}_{\mathrm{2}} \\ $$$${P}={f}_{\mathrm{1}} +{f}_{\mathrm{2}} \:\:{with}\:{f}_{\mathrm{2}} =\mu{N}_{\mathrm{2}} \\ $$$$ \\ $$$${N}_{\mathrm{1}} ={G}_{\mathrm{1}} −{T}\:\mathrm{sin}\:\theta={G}_{\mathrm{1}} −{f}_{\mathrm{1}} \:\mathrm{tan}\:\theta={G}_{\mathrm{1}} −\mu{N}_{\mathrm{1}} \:\mathrm{tan}\:\theta \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{{G}_{\mathrm{1}} }{\mathrm{1}+\mu\:\mathrm{tan}\:\theta} \\ $$$${N}_{\mathrm{2}} ={G}_{\mathrm{2}} +\frac{{G}_{\mathrm{1}} }{\mathrm{1}+\mu\:\mathrm{tan}\:\theta} \\ $$$${P}=\mu\left({G}_{\mathrm{2}} +\frac{\mathrm{2}{G}_{\mathrm{1}} }{\mathrm{1}+\mu\:\mathrm{tan}\:\theta}\right) \\ $$$$\:\:\:=\mathrm{0}.\mathrm{3}\left(\mathrm{2}+\frac{\mathrm{2}×\mathrm{1}}{\mathrm{1}+\mathrm{0}.\mathrm{3}×\mathrm{tan}\:\mathrm{30}°}\right)\approx\mathrm{1}.\mathrm{11}\:{KN} \\ $$
Commented by mathdave last updated on 16/Feb/24
thanks so much mr W
$${thanks}\:{so}\:{much}\:{mr}\:{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *