Menu Close

Prove-that-1-3-3-1-4-3-1-n-3-lt-1-12-




Question Number 204544 by hardmath last updated on 21/Feb/24
Prove that:  (1/3^3 )  +  (1/4^3 )  +  ...  +  (1/n^3 )  <  (1/(12))
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }\:\:+\:\:…\:\:+\:\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }\:\:<\:\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Answered by mr W last updated on 21/Feb/24
(1/3^3 )+(1/4^3 )+...+(1/n^3 )  =(1+(1/2^3 )+(1/3^3 )+(1/4^3 )+...+(1/n^3 )+(1/((n+1)^3 ))+...)−1−(1/2^3 )−((1/((n+1)^3 ))+...)  <(1+(1/2^3 )+(1/3^3 )+(1/4^3 )+...+(1/n^3 )+(1/((n+1)^3 ))+...)−1−(1/2^3 )  =ζ(3)−(9/8)<1.2021−(9/8)<(1/(12))
$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{3}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }+…\right)−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }−\left(\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }+…\right) \\ $$$$<\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }+…+\frac{\mathrm{1}}{{n}^{\mathrm{3}} }+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }+…\right)−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} } \\ $$$$=\zeta\left(\mathrm{3}\right)−\frac{\mathrm{9}}{\mathrm{8}}<\mathrm{1}.\mathrm{2021}−\frac{\mathrm{9}}{\mathrm{8}}<\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Commented by hardmath last updated on 23/Feb/24
Perfect dear professor thank you
$$\mathrm{Perfect}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *