Menu Close

Find-all-values-of-k-such-that-the-expression-x-3-kx-2-7x-6-can-be-resolved-into-three-linear-real-factors-




Question Number 205051 by mr W last updated on 06/Mar/24
Find all values of  k such that the  expression x^3 + kx^2 −7x+6 can be  resolved into three linear real factors.
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{expr}{e}\mathrm{ssion}\:\mathrm{x}^{\mathrm{3}} +\:\mathrm{kx}^{\mathrm{2}} −\mathrm{7x}+\mathrm{6}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{re}{s}\mathrm{olved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{real}\:\mathrm{factors}. \\ $$
Answered by Frix last updated on 06/Mar/24
k<c with c being the real solution of  c^3 −((49c^2 )/(24))+((63c)/2)−((50)/3)=0  c≈.543134153288
$${k}<{c}\:\mathrm{with}\:{c}\:\mathrm{being}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of} \\ $$$${c}^{\mathrm{3}} −\frac{\mathrm{49}{c}^{\mathrm{2}} }{\mathrm{24}}+\frac{\mathrm{63}{c}}{\mathrm{2}}−\frac{\mathrm{50}}{\mathrm{3}}=\mathrm{0} \\ $$$${c}\approx.\mathrm{543134153288} \\ $$
Commented by mr W last updated on 06/Mar/24
��
Answered by mr W last updated on 07/Mar/24
f(x)=x^3 +kx^2 −7x+6  f′(x)=3x^2 +2kx−7  at x=p: f(p)=0, f′(p)=0  p^3 +kp^2 −7p+6=0   ...(i)  3p^2 +2kp−7=0   ...(ii)  p^3 +7p−12=0  p=((((√(3945))/9)+6))^(1/3) −((((√(3945))/9)−6))^(1/3)   k=(1/2)((7/p)−3p)≈0.54313415
$${f}\left({x}\right)={x}^{\mathrm{3}} +{kx}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{6} \\ $$$${f}'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{kx}−\mathrm{7} \\ $$$${at}\:{x}={p}:\:{f}\left({p}\right)=\mathrm{0},\:{f}'\left({p}\right)=\mathrm{0} \\ $$$${p}^{\mathrm{3}} +{kp}^{\mathrm{2}} −\mathrm{7}{p}+\mathrm{6}=\mathrm{0}\:\:\:…\left({i}\right) \\ $$$$\mathrm{3}{p}^{\mathrm{2}} +\mathrm{2}{kp}−\mathrm{7}=\mathrm{0}\:\:\:…\left({ii}\right) \\ $$$${p}^{\mathrm{3}} +\mathrm{7}{p}−\mathrm{12}=\mathrm{0} \\ $$$${p}=\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{3945}}}{\mathrm{9}}+\mathrm{6}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{3945}}}{\mathrm{9}}−\mathrm{6}} \\ $$$${k}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{{p}}−\mathrm{3}{p}\right)\approx\mathrm{0}.\mathrm{54313415} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *