Menu Close

Prove-that-in-any-ABC-1-sinA-1-sinB-1-sinC-2-3-cot-A-2-cot-B-2-cot-C-2-




Question Number 205430 by hardmath last updated on 21/Mar/24
Prove that in any  △ABC  (1/(sinA)) + (1/(sinB)) + (1/(sinC)) ≤ (2/3) (cot(A/2) + cot(B/2) + cot(C/2))
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\frac{\mathrm{1}}{\mathrm{sinA}}\:+\:\frac{\mathrm{1}}{\mathrm{sinB}}\:+\:\frac{\mathrm{1}}{\mathrm{sinC}}\:\leqslant\:\frac{\mathrm{2}}{\mathrm{3}}\:\left(\mathrm{cot}\frac{\mathrm{A}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{B}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{C}}{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *