Menu Close

If-A-B-and-A-B-are-non-singular-square-matrices-prove-that-A-1-B-1-is-also-non-singular-




Question Number 206868 by depressiveshrek last updated on 28/Apr/24
If A, B and A+B are non−singular  square matrices, prove that A^(−1) +B^(−1)   is also non−singular.
$$\mathrm{If}\:{A},\:{B}\:\mathrm{and}\:{A}+{B}\:\mathrm{are}\:\mathrm{non}−\mathrm{singular} \\ $$$$\mathrm{square}\:\mathrm{matrices},\:\mathrm{prove}\:\mathrm{that}\:{A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{non}−\mathrm{singular}. \\ $$
Answered by aleks041103 last updated on 28/Apr/24
A^(−1) +B^(−1) =A^(−1) (E+AB^(−1) )=  =A^(−1) (B+A)B^(−1)   ⇒det(A^(−1) +B^(−1) )=det(A^(−1) B^(−1) (A+B))=  =det(A^(−1) )det(B^(−1) )det(A+B)    Since ∃A^(−1) ,B^(−1)  ⇒  ⇒det(A^(−1) +B^(−1) )=((det(A+B))/(det(A)det(B)))  Since A, B and A+B are nonsingular  ⇒det(A), det(B), det(A+B) ≠ 0  ⇒det(A^(−1) +B^(−1) )=((det(A+B))/(det(A)det(B)))≠0  ⇒det(A^(−1) +B^(−1) )≠0  ⇒A^(−1) +B^(−1)  is also nonsingular.
$${A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} ={A}^{−\mathrm{1}} \left({E}+{AB}^{−\mathrm{1}} \right)= \\ $$$$={A}^{−\mathrm{1}} \left({B}+{A}\right){B}^{−\mathrm{1}} \\ $$$$\Rightarrow{det}\left({A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \right)={det}\left({A}^{−\mathrm{1}} {B}^{−\mathrm{1}} \left({A}+{B}\right)\right)= \\ $$$$={det}\left({A}^{−\mathrm{1}} \right){det}\left({B}^{−\mathrm{1}} \right){det}\left({A}+{B}\right) \\ $$$$ \\ $$$${Since}\:\exists{A}^{−\mathrm{1}} ,{B}^{−\mathrm{1}} \:\Rightarrow \\ $$$$\Rightarrow{det}\left({A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \right)=\frac{{det}\left({A}+{B}\right)}{{det}\left({A}\right){det}\left({B}\right)} \\ $$$${Since}\:{A},\:{B}\:{and}\:{A}+{B}\:{are}\:{nonsingular} \\ $$$$\Rightarrow{det}\left({A}\right),\:{det}\left({B}\right),\:{det}\left({A}+{B}\right)\:\neq\:\mathrm{0} \\ $$$$\Rightarrow{det}\left({A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \right)=\frac{{det}\left({A}+{B}\right)}{{det}\left({A}\right){det}\left({B}\right)}\neq\mathrm{0} \\ $$$$\Rightarrow{det}\left({A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \right)\neq\mathrm{0} \\ $$$$\Rightarrow{A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \:{is}\:{also}\:{nonsingular}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *