Menu Close

Question-207230




Question Number 207230 by mr W last updated on 10/May/24
Answered by mr W last updated on 10/May/24
Commented by mr W last updated on 10/May/24
tan^(−1) (x/y)+tan^(−1) ((4−x)/y)=60°  (((x/y)+((4−x)/y))/(1−((x(4−x))/y^2 )))=(√3)  ((4y)/(y^2 +x^2 −4x))=(√3)  ⇒x^2 −4x=((4y)/( (√3)))−y^2   tan^(−1) (x/(4−y))+tan^(−1) ((4−x)/(4−y))=105°  (((x/(4−y))+((4−x)/(4−y)))/(1−((x(4−x))/((4−y)^2 ))))=−(√3)−2  ((4(4−y))/(y^2 −8y+16+x^2 −4x))=−(√3)−2  ⇒x^2 −4x=−((4(4−y))/( (√3)+2))−y^2 +8y−16  ⇒((4y)/( (√3)))−y^2 =−((4(4−y))/( (√3)+2))−y^2 +8y−16  ⇒y=3  ((green)/(yellow))=(y/(4−y))=(3/(4−1))=3 ✓
$$\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{{y}}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}−{x}}{{y}}=\mathrm{60}° \\ $$$$\frac{\frac{{x}}{{y}}+\frac{\mathrm{4}−{x}}{{y}}}{\mathrm{1}−\frac{{x}\left(\mathrm{4}−{x}\right)}{{y}^{\mathrm{2}} }}=\sqrt{\mathrm{3}} \\ $$$$\frac{\mathrm{4}{y}}{{y}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{4}{x}}=\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{4}{x}=\frac{\mathrm{4}{y}}{\:\sqrt{\mathrm{3}}}−{y}^{\mathrm{2}} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\mathrm{4}−{y}}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}−{x}}{\mathrm{4}−{y}}=\mathrm{105}° \\ $$$$\frac{\frac{{x}}{\mathrm{4}−{y}}+\frac{\mathrm{4}−{x}}{\mathrm{4}−{y}}}{\mathrm{1}−\frac{{x}\left(\mathrm{4}−{x}\right)}{\left(\mathrm{4}−{y}\right)^{\mathrm{2}} }}=−\sqrt{\mathrm{3}}−\mathrm{2} \\ $$$$\frac{\mathrm{4}\left(\mathrm{4}−{y}\right)}{{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{16}+{x}^{\mathrm{2}} −\mathrm{4}{x}}=−\sqrt{\mathrm{3}}−\mathrm{2} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{4}{x}=−\frac{\mathrm{4}\left(\mathrm{4}−{y}\right)}{\:\sqrt{\mathrm{3}}+\mathrm{2}}−{y}^{\mathrm{2}} +\mathrm{8}{y}−\mathrm{16} \\ $$$$\Rightarrow\frac{\mathrm{4}{y}}{\:\sqrt{\mathrm{3}}}−{y}^{\mathrm{2}} =−\frac{\mathrm{4}\left(\mathrm{4}−{y}\right)}{\:\sqrt{\mathrm{3}}+\mathrm{2}}−{y}^{\mathrm{2}} +\mathrm{8}{y}−\mathrm{16} \\ $$$$\Rightarrow{y}=\mathrm{3} \\ $$$$\frac{{green}}{{yellow}}=\frac{{y}}{\mathrm{4}−{y}}=\frac{\mathrm{3}}{\mathrm{4}−\mathrm{1}}=\mathrm{3}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *