Menu Close

a-b-a-how-is-the-solution-




Question Number 207332 by mustafazaheen last updated on 12/May/24
(a^→ ×b^→ )×(a^→ )=?  how is the solution
$$\left(\overset{\rightarrow} {\mathrm{a}}×\overset{\rightarrow} {\mathrm{b}}\right)×\left(\overset{\rightarrow} {\mathrm{a}}\right)=? \\ $$$$\mathrm{how}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution} \\ $$
Commented by Ghisom last updated on 12/May/24
( ((a_1 ),(a_2 ),(a_3 ) ) × ((b_1 ),(b_2 ),(b_3 ) ) )× ((a_1 ),(a_2 ),(a_3 ) ) =  = (((a_2 b_3 −a_3 b_2 )),((a_3 b_1 −a_1 b_3 )),((a_1 b_2 −a_2 b_1 )) ) × ((a_1 ),(a_2 ),(a_3 ) ) =  = ((((a_2 ^2 +a_3 ^2 )b_1 −a_1 (a_2 b_2 +a_3 b_3 ))),(((a_1 ^2 +a_3 ^2 )b_2 −a_2 (a_1 b_1 +a_3 b_3 ))),(((a_1 ^2 +a_2 ^2 )b_3 −a_3 (a_1 b_1 +a_2 b_2 ))) )
$$\left(\begin{pmatrix}{{a}_{\mathrm{1}} }\\{{a}_{\mathrm{2}} }\\{{a}_{\mathrm{3}} }\end{pmatrix}\:×\begin{pmatrix}{{b}_{\mathrm{1}} }\\{{b}_{\mathrm{2}} }\\{{b}_{\mathrm{3}} }\end{pmatrix}\:\right)×\begin{pmatrix}{{a}_{\mathrm{1}} }\\{{a}_{\mathrm{2}} }\\{{a}_{\mathrm{3}} }\end{pmatrix}\:= \\ $$$$=\begin{pmatrix}{{a}_{\mathrm{2}} {b}_{\mathrm{3}} −{a}_{\mathrm{3}} {b}_{\mathrm{2}} }\\{{a}_{\mathrm{3}} {b}_{\mathrm{1}} −{a}_{\mathrm{1}} {b}_{\mathrm{3}} }\\{{a}_{\mathrm{1}} {b}_{\mathrm{2}} −{a}_{\mathrm{2}} {b}_{\mathrm{1}} }\end{pmatrix}\:×\begin{pmatrix}{{a}_{\mathrm{1}} }\\{{a}_{\mathrm{2}} }\\{{a}_{\mathrm{3}} }\end{pmatrix}\:= \\ $$$$=\begin{pmatrix}{\left({a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} \right){b}_{\mathrm{1}} −{a}_{\mathrm{1}} \left({a}_{\mathrm{2}} {b}_{\mathrm{2}} +{a}_{\mathrm{3}} {b}_{\mathrm{3}} \right)}\\{\left({a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} \right){b}_{\mathrm{2}} −{a}_{\mathrm{2}} \left({a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{3}} {b}_{\mathrm{3}} \right)}\\{\left({a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} \right){b}_{\mathrm{3}} −{a}_{\mathrm{3}} \left({a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{2}} {b}_{\mathrm{2}} \right)}\end{pmatrix} \\ $$
Answered by aleks041103 last updated on 12/May/24
(a^(→) ×b^(→) )×c^(→) =(a^(→) .c^(→) )b^(→) −(b^(→) .c^(→) )a^(→)   ⇒(a^(→) ×b^(→) )×a^(→) =(a^(→) .a^(→) )b^(→) −(b^(→) .a^(→) )a^(→) =  =∣a^(→) ∣^2 b^(→) −(a^(→) .b^(→) )a^(→)
$$\left(\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}\right)×\overset{\rightarrow} {{c}}=\left(\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{c}}\right)\overset{\rightarrow} {{b}}−\left(\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{c}}\right)\overset{\rightarrow} {{a}} \\ $$$$\Rightarrow\left(\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}\right)×\overset{\rightarrow} {{a}}=\left(\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{a}}\right)\overset{\rightarrow} {{b}}−\left(\overset{\rightarrow} {{b}}.\overset{\rightarrow} {{a}}\right)\overset{\rightarrow} {{a}}= \\ $$$$=\mid\overset{\rightarrow} {{a}}\mid^{\mathrm{2}} \overset{\rightarrow} {{b}}−\left(\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{b}}\right)\overset{\rightarrow} {{a}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *