Menu Close

2-sinx-cosx-1-




Question Number 207588 by hardmath last updated on 19/May/24
(√2) sinx  +  cosx  ≥  1
$$\sqrt{\mathrm{2}}\:\mathrm{sin}\boldsymbol{\mathrm{x}}\:\:+\:\:\mathrm{cos}\boldsymbol{\mathrm{x}}\:\:\geqslant\:\:\mathrm{1} \\ $$
Answered by mr W last updated on 19/May/24
((√2)/( (√3))) sin x+(1/( (√3))) cos x≥(1/( (√3)))  sin α  sin x+cos α cos x≥(1/( (√3)))  with α=cos^(−1) (1/( (√3)))  cos (x−α)≥(1/( (√3)))  2kπ−cos^(−1) (1/( (√3)))≤x−α≤2kπ+cos^(−1) (1/( (√3)))  ⇒2kπ≤x≤2kπ+2 cos^(−1) (1/( (√3)))  or  ⇒2kπ≤x≤(2k+1)π−cos^(−1) (1/( 3))
$$\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\:\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\mathrm{cos}\:{x}\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{sin}\:\alpha\:\:\mathrm{sin}\:{x}+\mathrm{cos}\:\alpha\:\mathrm{cos}\:{x}\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${with}\:\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{cos}\:\left({x}−\alpha\right)\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{2}{k}\pi−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\leqslant{x}−\alpha\leqslant\mathrm{2}{k}\pi+\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\mathrm{2}{k}\pi\leqslant{x}\leqslant\mathrm{2}{k}\pi+\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${or} \\ $$$$\Rightarrow\mathrm{2}{k}\pi\leqslant{x}\leqslant\left(\mathrm{2}{k}+\mathrm{1}\right)\pi−\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\mathrm{3}} \\ $$
Commented by hardmath last updated on 19/May/24
thank you very mych professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{mych}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *