Menu Close

f-x-y-ax-2-by-2-How-do-you-find-where-the-gradient-is-zero-for-multivariable-funtions-




Question Number 7040 by FilupSmith last updated on 07/Aug/16
f(x,y)=ax^2 +by^2   How do you find where the gradient  is zero for multivariable funtions?
$${f}\left({x},{y}\right)={ax}^{\mathrm{2}} +{by}^{\mathrm{2}} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{where}\:\mathrm{the}\:\mathrm{gradient} \\ $$$$\mathrm{is}\:\mathrm{zero}\:\mathrm{for}\:\mathrm{multivariable}\:\mathrm{funtions}? \\ $$
Commented by Yozzii last updated on 07/Aug/16
▽f=grad f= (((∂f/∂x)),((∂f/∂y)) )  At stationary points, ▽f=0_−   ∴ (∂f/∂x)=0  and (∂f/∂y)=0 simultaneously at some (x,y)  For f(x,y)=ax^2 +by^2 , ▽f=0_−  at x=y=0.  There is also the directional derivative of f  u^� •(▽f) at a point (x,y) in the direction  of the unit vector u^�  in the x−y plane.  u^� • (((∂f/∂x)),((∂f/∂y)) )  gives the gradienti of  the surface of f in the direction of u^� .
$$\bigtriangledown{f}={grad}\:{f}=\begin{pmatrix}{\frac{\partial{f}}{\partial{x}}}\\{\frac{\partial{f}}{\partial{y}}}\end{pmatrix} \\ $$$${At}\:{stationary}\:{points},\:\bigtriangledown{f}=\underset{−} {\mathrm{0}} \\ $$$$\therefore\:\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\:{and}\:\frac{\partial{f}}{\partial{y}}=\mathrm{0}\:{simultaneously}\:{at}\:{some}\:\left({x},{y}\right) \\ $$$${For}\:{f}\left({x},{y}\right)={ax}^{\mathrm{2}} +{by}^{\mathrm{2}} ,\:\bigtriangledown{f}=\underset{−} {\mathrm{0}}\:{at}\:{x}={y}=\mathrm{0}. \\ $$$${There}\:{is}\:{also}\:{the}\:{directional}\:{derivative}\:{of}\:{f} \\ $$$$\hat {\boldsymbol{{u}}}\bullet\left(\bigtriangledown{f}\right)\:{at}\:{a}\:{point}\:\left({x},{y}\right)\:{in}\:{the}\:{direction} \\ $$$${of}\:{the}\:{unit}\:{vector}\:\hat {\boldsymbol{{u}}}\:{in}\:{the}\:{x}−{y}\:{plane}. \\ $$$$\hat {\boldsymbol{{u}}}\bullet\begin{pmatrix}{\partial{f}/\partial{x}}\\{\partial{f}/\partial{y}}\end{pmatrix}\:\:{gives}\:{the}\:{gradienti}\:{of} \\ $$$${the}\:{surface}\:{of}\:{f}\:{in}\:{the}\:{direction}\:{of}\:\hat {\boldsymbol{{u}}}. \\ $$
Commented by FilupSmith last updated on 07/Aug/16
This is extremely interesting!  I′ll have to learn this area of mathematics!
$$\mathrm{This}\:\mathrm{is}\:\mathrm{extremely}\:\mathrm{interesting}! \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{this}\:\mathrm{area}\:\mathrm{of}\:\mathrm{mathematics}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *