Question Number 209580 by hardmath last updated on 15/Jul/24
$$\mathrm{If}\:\:\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} >\mathrm{0}\:\:\:\mathrm{and}\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{0} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{n}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{ln}\:\left(\frac{\mathrm{k}}{\mathrm{n}}\:+\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)\:=\:? \\ $$
Answered by mr W last updated on 15/Jul/24
$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\:\left({x}+{a}\right){dx} \\ $$$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\mathrm{ln}\:\frac{\left(\mathrm{1}+{a}\right)^{\left(\mathrm{1}+{a}\right)} }{{a}^{{a}} }−\mathrm{1}\right] \\ $$$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\mathrm{ln}\:\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)^{{a}} −\mathrm{1}\right] \\ $$$$=\mathrm{ln}\:\mathrm{1}−\mathrm{1} \\ $$$$=−\mathrm{1} \\ $$
Commented by hardmath last updated on 16/Jul/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Answered by Berbere last updated on 16/Jul/24
$$\forall\epsilon\geqslant\mathrm{0}\:\exists\eta>\mathrm{0}\:\forall{n}\geqslant\mathbb{N}\: \\ $$$${a}_{{n}} \leqslant\epsilon;\:{let}\:{n}\:\geqslant{N}\Rightarrow \\ $$$$\Rightarrow\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left(\frac{{k}}{{n}}\right)\leqslant{U}_{{n}} =\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left(\frac{{k}}{{n}}+{a}_{{n}} \right)\leqslant\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left(\frac{{k}}{{n}}+\epsilon\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left(\frac{{k}}{{n}}\right)\leqslant{U}_{{n}} \leqslant\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}+\epsilon\right)=\left(\mathrm{1}+\epsilon\right){ln}\left(\mathrm{1}+\epsilon\right)−\mathrm{1} \\ $$$$\forall\epsilon>\mathrm{0}\:\exists{N}\in\mathbb{N}\:{such}\:{that}\:{U}_{{n}} \leqslant\left(\mathrm{1}+\epsilon\right){ln}\left(\mathrm{1}+\epsilon\right)−\mathrm{1} \\ $$$$\Rightarrow{l}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} \leqslant{inf}\:\left(\mathrm{1}+\epsilon\right){ln}\left(\mathrm{1}+\epsilon\right)−\mathrm{1}=−\mathrm{1} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){dx}\leqslant{l}\leqslant−\mathrm{1}\Rightarrow{l}=−\mathrm{1} \\ $$$$ \\ $$
Commented by hardmath last updated on 16/Jul/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{cool} \\ $$