Menu Close

Let-u-n-be-a-set-satisfying-u-1-1-amp-u-n-1-u-n-ln-n-u-n-n-1-1-Prove-that-u-2023-gt-2023-ln-2023-2-Find-lim-n-u-n-ln-n-n-




Question Number 209631 by York12 last updated on 17/Jul/24
Let u_n  be a set satisfying u_1 =1 & u_(n+1) =u_n +((ln n)/u_n )  , ∀ n ≥1  1. Prove that u_(2023) >(√(2023.ln 2023)).  2. Find: lim_(n→∞) ((u_n .ln n)/n).
$$\mathrm{Let}\:{u}_{{n}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{set}\:\mathrm{satisfying}\:{u}_{\mathrm{1}} =\mathrm{1}\:\&\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} +\frac{\mathrm{ln}\:{n}}{{u}_{{n}} }\:\:,\:\forall\:{n}\:\geqslant\mathrm{1} \\ $$$$\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:{u}_{\mathrm{2023}} >\sqrt{\mathrm{2023}.\mathrm{ln}\:\mathrm{2023}}. \\ $$$$\mathrm{2}.\:\mathrm{Find}:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{u}_{{n}} .\mathrm{ln}\:{n}}{{n}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *