Menu Close

MATH-WHIZZKID-using-kamke-find-the-genral-solution-for-the-differential-equation-1-x-2-y-x-2-y-2y-0-solve-this-using-forbenius-mtd-1-x-2-y-x-3-3x-y-4-2x-y-0-solve-the-dif




Question Number 210017 by klipto last updated on 28/Jul/24
  MATH−WHIZZKID  using kamke find the genral  solution for the differential equation  1. x^2 y′′+x^2 y′−2y=0  −−−−−−−−−  solve this using forbenius mtd  1.x^2 y′′+(x^3 −3x)y′+(4−2x)y=0  −−−−−−−−  solve the differential eqn by power series  1. y′′−2xy′+2py=0  −−−−−−−−−  use perseval′s theorem to  ∫_0 ^∞ ((cos^2 (𝛂(𝛑/2)))/((1−𝛂^2 )^2 ))dx.  −−−−−−−−−−  evaluate this integral by contour integration  1. ∫_0 ^∞ ((cos^2 (𝛂(𝛑/2)))/((1−𝛂^2 )^2 ))dx.  −−−−−−−−−  ∮_c ((1+e^(i𝛑z) )/((z−1)^2 (z+1)^2 ))dz  c−upper half plane  klipto−quanta⊎
$$ \\ $$$$\boldsymbol{\mathrm{MATH}}−\boldsymbol{\mathrm{WHIZZKID}} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{kamke}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{genral}} \\ $$$$\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\mathrm{1}.\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}''+\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}'−\mathrm{2}\boldsymbol{\mathrm{y}}=\mathrm{0} \\ $$$$−−−−−−−−− \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{forbenius}}\:\boldsymbol{\mathrm{mtd}} \\ $$$$\mathrm{1}.\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}''+\left(\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{y}}'+\left(\mathrm{4}−\mathrm{2}\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{y}}=\mathrm{0} \\ $$$$−−−−−−−− \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{eqn}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{power}}\:\boldsymbol{\mathrm{series}} \\ $$$$\mathrm{1}.\:\boldsymbol{\mathrm{y}}''−\mathrm{2}\boldsymbol{\mathrm{xy}}'+\mathrm{2}\boldsymbol{\mathrm{py}}=\mathrm{0} \\ $$$$−−−−−−−−− \\ $$$$\boldsymbol{\mathrm{use}}\:\boldsymbol{\mathrm{perseval}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{theorem}}\:\boldsymbol{\mathrm{to}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\boldsymbol{\alpha}\frac{\boldsymbol{\pi}}{\mathrm{2}}\right)}{\left(\mathrm{1}−\boldsymbol{\alpha}^{\mathrm{2}} \right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}. \\ $$$$−−−−−−−−−− \\ $$$$\boldsymbol{\mathrm{evaluate}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{integral}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{contour}}\:\boldsymbol{\mathrm{integration}} \\ $$$$\mathrm{1}.\:\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\boldsymbol{\alpha}\frac{\boldsymbol{\pi}}{\mathrm{2}}\right)}{\left(\mathrm{1}−\boldsymbol{\alpha}^{\mathrm{2}} \right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}. \\ $$$$−−−−−−−−− \\ $$$$\oint_{\boldsymbol{\mathrm{c}}} \frac{\mathrm{1}+\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{i}\pi\mathrm{z}}} }{\left(\boldsymbol{\mathrm{z}}−\mathrm{1}\right)^{\mathrm{2}} \left(\boldsymbol{\mathrm{z}}+\mathrm{1}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dz}} \\ $$$$\boldsymbol{\mathrm{c}}−\mathrm{upper}\:\mathrm{half}\:\mathrm{plane} \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}}\biguplus \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *