Menu Close

find-63-36-mod97-thanks-




Question Number 210719 by lmcp1203 last updated on 17/Aug/24
find 63!^(36!) mod97   thanks
$${find}\:\mathrm{63}!^{\mathrm{36}!} {mod}\mathrm{97}\:\:\:{thanks} \\ $$
Answered by A5T last updated on 19/Aug/24
φ(97)=96  36!≡0(mod 96)⇒36!=96k  (63!,97)=1⇒63!^(36!) =(63!)^(96k) ≡1(mod 97)
$$\phi\left(\mathrm{97}\right)=\mathrm{96} \\ $$$$\mathrm{36}!\equiv\mathrm{0}\left({mod}\:\mathrm{96}\right)\Rightarrow\mathrm{36}!=\mathrm{96}{k} \\ $$$$\left(\mathrm{63}!,\mathrm{97}\right)=\mathrm{1}\Rightarrow\mathrm{63}!^{\mathrm{36}!} =\left(\mathrm{63}!\right)^{\mathrm{96}{k}} \equiv\mathrm{1}\left({mod}\:\mathrm{97}\right) \\ $$
Answered by lmcp1203 last updated on 17/Aug/24
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *