Menu Close

lim-x-0-1-x-2-1-3-1-e-x-2-1-




Question Number 211717 by liuxinnan last updated on 18/Sep/24
lim_(x→0) (((1+x^2 )^(1/3) −1)/(e^x^2  −1))=?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{li}{m}}\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{1}}{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}=? \\ $$
Answered by BHOOPENDRA last updated on 18/Sep/24
lim_(x→0)  (((((2x)/(3(1+x^2 )^(2/3) ))))/((2xe^x^2  )))  Apply L′Ho^� pital rule  lim_(x→0)  (1/(3(1+x^2 )^(2/3) e^x^2  ))  =(1/(3(1+0)^(2/3) e^0 ))=(1/3)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{2}{x}}{\mathrm{3}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\right)}{\left(\mathrm{2}{xe}^{{x}^{\mathrm{2}} } \right)}\:\:{Apply}\:{L}'{H}\hat {{o}pital}\:{rule} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} {e}^{{x}^{\mathrm{2}} } } \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+\mathrm{0}\right)^{\mathrm{2}/\mathrm{3}} {e}^{\mathrm{0}} }=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *