Question Number 211716 by liuxinnan last updated on 18/Sep/24
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}×\centerdot\centerdot\centerdot×{x}}\right)=? \\ $$
Answered by BHOOPENDRA last updated on 18/Sep/24
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{n}=\mathrm{0}\:} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{n}!}−\mathrm{1}\right) \\ $$$${x}\rightarrow\infty\:{so}\: \\ $$$${S}=\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}−\mathrm{1}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{S}_{{x}} ={e}−\mathrm{1}\:\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}={e}\right) \\ $$
Commented by liuxinnan last updated on 19/Sep/24
$${why}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}={e} \\ $$
Commented by TonyCWX08 last updated on 19/Sep/24
$${Using}\:{Maclaurin}\:{series}, \\ $$$${f}\left({x}\right)=\frac{{f}\left(\mathrm{0}\right)}{\mathrm{0}!}{x}^{\mathrm{0}} +\frac{{f}'\left(\mathrm{0}\right)}{\mathrm{1}!}{x}^{\mathrm{1}} +\frac{{f}''\left(\mathrm{0}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{{f}'''\left(\mathrm{0}\right)}{\mathrm{3}!}{x}^{\mathrm{3}} +…+\frac{{f}^{{n}} \left(\mathrm{0}\right)}{{n}!}{x}^{{n}} \\ $$$$ \\ $$$${let}\:{f}\left({x}\right)\:=\:{e}^{{x}} \\ $$$${No}\:{matter}\:{how}\:{many}\:{times}\:{you}\:{differentiate}\:{it},\:{it}\:{always}\:{will}\:{be}\:{e}^{{x}} \\ $$$${Hence},\: \\ $$$${f}^{{n}} \left({x}\right)={e}^{{x}} \\ $$$${f}^{{n}} \left(\mathrm{0}\right)=\mathrm{1} \\ $$$$ \\ $$$${Substitute}\:{into}\:{the}\:{series}, \\ $$$${e}^{{x}} =\frac{\mathrm{1}}{\mathrm{0}!}{x}^{\mathrm{0}} +\frac{\mathrm{1}}{\mathrm{1}!}{x}^{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}!}{x}^{\mathrm{3}} +… \\ $$$${let}\:{x}\:=\mathrm{1} \\ $$$${e}=\frac{\mathrm{1}}{\mathrm{0}!}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}… \\ $$$$ \\ $$$${Hence},\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}!}\right) \\ $$
Commented by TonyCWX08 last updated on 19/Sep/24
$${Hope}\:{you}\:{understand}\:{now},\:{Liu}\:{Xin}\:{Nan} \\ $$
Commented by liuxinnan last updated on 19/Sep/24
$${I}\:{get} \\ $$
Commented by BHOOPENDRA last updated on 19/Sep/24