Menu Close

DEFINATION-OF-QUADRATIC-FORM-A-Quadratic-form-is-a-homogeneous-polynomial-of-degree-two-in-multiple-variable-Q-X-T-AX-Here-Q-Quadratic-form-ax-2-by-2-cz




Question Number 212028 by siva12345 last updated on 27/Sep/24
DEFINATION    OF   QUADRATIC  FORM:        A  Quadratic  form  is  a homogeneous  polynomial  of  degree two  in  multiple  variable.                      Q=X^T AX  Here  Q=Quadratic form.  ax^2 +by^2 +cz^2 +2hxy+2fyz+2gzx=0  By  using  these  Q=X^T AX  [we  can  write matrix A]  A= [(x),(y),(z) ] [((a     h     g)),((h     b     f)),((g     f     c)) ] [(x,y,z) ]  By  using  the  characteristic  equation  of   matrix  ∣A−λI∣ =0  To   get  eigen  equation   to  can  solve  eigen  equations  to  get  eigen values.  Suppose  substitute  the  eigwn  value  in  ∣A−1λI∣X =0  After  row  transformation  we  can  get  x_1 ,x_2 ,x_3   P =[e_(1  ) e_2   e_3 ]        ∴ {Here  p  is   a  modal  matrix}  Since  p  is  a  orthogonal  matrix  p^(−1) =p  D=P^T AP     Where  D   is  diagonal  matrix.  The  quadratic  form  can  be  reduce  into  normal  form  X = Y^T DY.  Here:             Index    =  The number of positive terms in its canonical  form  Signature =  The difference of positive and negative term in the canonical form  If all λ>0⇒ positive  definite.  If all λ<0⇒ negative  definite.  If all λ≥0  atleast one λ= 0⇒positive semidefinite.  If all λ≤ 0 atlest one  λ= 0⇒negative semidefinite.  If some λ are positive and some λ are negative⇒indefinite.  X = PY is used transformation of quadratic form to  normal form (or) canonical form.  Eg:  (Q) Reduce  the quadratic  form  3x^2 +2y^2 +3z^2 −2xy−2yz = 0  to canonical form by orthogonal transformation   and also find rank, index, nature  and  signature.  Sol: The given equation is  3x^2 +2y^2 +3z^2 −2xy−2yz=0  3xx+2yy+3zz−xy−xy−yz−yz=0   we know that Q=X^T AX                                        = [(X),(Y),(Z) ] [((     3     −1          0)),((−1          2      −1)),((     0      −1         3)) ] [(X,Y,Z) ]         The corresponding  symmetric  matrix A= [((     3     −1        0)),((−1         2    −1)),((     0     −1        3)) ]      To find the eigen values we can use the chareteristic eauation of matrix A is ∣A−λI∣= 0   [((     3−λ     −1                  0)),((−1                 2−λ       −1)),((    0             −1            3−λ)) ]= 0  (3−λ)[(2−λ)(3−λ)−1)]+1[−1(3−λ)]= 0  (3−λ)(−5λ+λ^2 +5)+(λ−3)= 0  λ^3 −8λ^2 +19λ−12= 0  λ=1,3,4    Case i:                 λ=1 substitute  in [A−λI]X = 0   [((    2    −1         0)),((−1        1    −1)),((     0   −1         2)) ] [(x_1 ),(x_2 ),(x_3 ) ]= [(0),(0),(0) ]                            R_2 ⇒R_2 +2R_1       [(( 2     −1         0  )),(( 0          1    −2)),(( 0     −1         2)) ]  [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]                        R_3 ⇒R_3 +R_2    [((2      −1         0 )),((0          1     −2)),((0          0         0)) ]  [(x_1 ),(x_2 ),(x_3 ) ] =   [(0),(0),(0) ]  2 x_(1 ) −x_2 =0   x_2 −2x_3 =0   x_3 = k   x_2 = 2k   x_1 = k   x_1 = [(1),(2),(1) ]k    Case ii:                  λ = 3   To substitite λ value in [A−λI]X = 0   [((     0       −1      0)),((−1       −1  −1)),((     0        −1      0)) ] [(x_1 ),(x_2 ),(x_3 ) ]=  [(0),(0),(0) ]                                (R_1 ⇔R_2 )   [(( −1     −1     −1)),((      0     −1         0)),((      0      −1        0)) ] [(x_1 ),(x_2 ),(x_3 ) ]=  [((0 )),(0),(0) ]                                 R_3 ⇒R_3 −R_2    [((  −1      −1   −1)),((       0      −1       0)),((       0          0        0)) ] [(x_1 ),(x_2 ),((x3)) ] =  [(0),(0),(0) ]           x_2 = 0      −x_1 −x_2 −x_(3 ) =0          x_3  = k          x_(1  ) = −k            x_2 =  [((−1)),((    0)),((    1)) ]k  Case iii:                  λ  = 4  To substitute in  equation                  [ A−λI ]X = 0   [((  −1       −1        0)),((  −1       −2   −1)),((      0       −1    −1)) ] [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]                                   R_2 ⇒R_2 −R_1    [((  −1     −1          0)),((      0      −1     −1)),((      0      −1     −1)) ] [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]                            R_3 ⇒R_3 −R_2    [((  −1    −1           0)),((       0    −1      −1)),((       0         0          0)) ] [(x_1 ),(x_2 ),(x_3 ) ] =  [(0),(0),(0) ]       −x_1 −x_(2 ) = 0       −x_3 −x_3  = 0           x_(3 )  =    k          x_2  = −k          x_1  =    k          x_(3  ) =  [((    1)),((−1)),((     1  )) ]k  we can observe that vectors are orthogonally  mutually  we  normalize this vectors and obtain.  e_1  =  [((1/( (√6)))),((2/( (√6)))),((1/( (√6)))) ]     e_2 =   [(((−1)/(   (√2)))),((     0)),((    (1/( (√2))))) ]       e_3  = [((1/( (√3)))),(((−1)/( (√3)))),((1/( (√3)))) ]            let P = the modal matrix in normalized form   P = [e_(1  ) e_2  e_3 ] = [(((1/( (√6)))       ((−1)/( (√(2 ))))        (1/( (√3))))),(((2/( (√(6 )) ))       0          ((−1)/( (√3))))),(((1/( (√6)))         (1/( (√2)))      ((−1)/( (√3))))) ]  Since p is a orthogonal matrix P^(−1 ) =  P^T    So D = P^T AP    where  D  is diagnol matrix                                    = [(((1/( (√6)))        ((−2)/( (√6)))            (1/( (√6))))),((((−1)/( (√2)))           0             (1/( (√2))))),(((1/( (√3)))        ((−1)/( (√3)))            ((−1)/( (√3))))) ] [((    3       −1         0)),((−1           2     −1)),((    0       −1          3)) ] [(((1/( (√(6 ))))        −(1/( (√2)))         (1/( (√3))))),(((2/( (√6)))                0          ((−1)/( (√3))))),(((1/( (√6)))             (1/( (√2)))       −(1/( (√3))))) ]  D  =  [((1   0    0 )),((0    3   0)),((0    0    4)) ]  The quadratic form can be reduce to normal form Y^T  DY  Y^( T) DY = [y_1   y_(2 )  y_3 ]  [((1    0     0)),((0    3     0)),((0    0    4)) ]  [(y_1 ),(y_2 ),(y_3 ) ]      y_1 ^2 +3y_2 ^2 +4y_3 ^(2 )   = 0       Rank          = 3        Index = 3     Signature= 3       Nature=Positive definite   By orthogonal tfansformation X = PY   [(x_1 ),(x_2 ),(x_3 ) ] =  [(((1/( (√6)))             ((−1)/( (√2)))              (1/( (√3))))),(((2/( (√6)))               0                ((−1)/( (√3))))),(((1/( (√(6  ))))             (1/( (√2)))             (1/( (√3))))) ] [(y_1 ),(y_2 ),(y_3 ) ]  x_(1  ) = (y_1 /( (√6)))−(y_2 /( (√2)))+(y_3 /( (√3))).  x_2 = ((2y_1 )/( (√6)))−(y_3 /( (√(3.))))  x_3 = (y_1 /( (√6)))+(y_2 /( (√2)))+(y_3 /( (√(3.))))                            o
$${DEFINATION}\:\:\:\:{OF}\:\:\:{QUADRATIC}\:\:{FORM}:\: \\ $$$$\:\:\:\:\:{A}\:\:{Quadratic}\:\:{form}\:\:{is}\:\:{a}\:{homogeneous}\:\:{polynomial}\:\:{of}\:\:{degree}\:{two}\:\:{in}\:\:{multiple}\:\:{variable}.\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Q}={X}^{{T}} {AX} \\ $$$${Here}\:\:{Q}={Quadratic}\:{form}. \\ $$$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} +\mathrm{2}{hxy}+\mathrm{2}{fyz}+\mathrm{2}{gzx}=\mathrm{0} \\ $$$${By}\:\:{using}\:\:{these}\:\:{Q}={X}^{{T}} {AX}\:\:\left[{we}\:\:{can}\:\:{write}\:{matrix}\:{A}\right] \\ $$$${A}=\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}\begin{bmatrix}{{a}\:\:\:\:\:{h}\:\:\:\:\:{g}}\\{{h}\:\:\:\:\:{b}\:\:\:\:\:{f}}\\{{g}\:\:\:\:\:{f}\:\:\:\:\:{c}}\end{bmatrix}\begin{bmatrix}{{x}}&{{y}}&{{z}}\end{bmatrix} \\ $$$${By}\:\:{using}\:\:{the}\:\:{characteristic}\:\:{equation}\:\:{of}\:\:\:{matrix}\:\:\mid{A}−\lambda{I}\mid\:=\mathrm{0} \\ $$$${To}\:\:\:{get}\:\:{eigen}\:\:{equation}\:\:\:{to}\:\:{can}\:\:{solve}\:\:{eigen}\:\:{equations}\:\:{to}\:\:{get}\:\:{eigen}\:{values}. \\ $$$${Suppose}\:\:{substitute}\:\:{the}\:\:{eigwn}\:\:{value}\:\:{in}\:\:\mid{A}−\mathrm{1}\lambda{I}\mid{X}\:=\mathrm{0} \\ $$$${After}\:\:{row}\:\:{transformation}\:\:{we}\:\:{can}\:\:{get}\:\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{x}_{\mathrm{3}} \\ $$$${P}\:=\left[{e}_{\mathrm{1}\:\:} {e}_{\mathrm{2}} \:\:{e}_{\mathrm{3}} \right]\:\:\:\:\:\:\:\:\therefore\:\left\{{Here}\:\:{p}\:\:{is}\:\:\:{a}\:\:{modal}\:\:{matrix}\right\} \\ $$$${Since}\:\:{p}\:\:{is}\:\:{a}\:\:{orthogonal}\:\:{matrix}\:\:{p}^{−\mathrm{1}} ={p} \\ $$$${D}={P}^{{T}} {AP}\:\:\:\:\:{Where}\:\:{D}\:\:\:{is}\:\:{diagonal}\:\:{matrix}. \\ $$$${The}\:\:{quadratic}\:\:{form}\:\:{can}\:\:{be}\:\:{reduce}\:\:{into}\:\:{normal}\:\:{form}\:\:{X}\:=\:{Y}^{{T}} {DY}. \\ $$$${Here}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Index}\:\:\:\:=\:\:{The}\:{number}\:{of}\:{positive}\:{terms}\:{in}\:{its}\:{canonical}\:\:{form} \\ $$$${Signature}\:=\:\:{The}\:{difference}\:{of}\:{positive}\:{and}\:{negative}\:{term}\:{in}\:{the}\:{canonical}\:{form} \\ $$$${If}\:{all}\:\lambda>\mathrm{0}\Rightarrow\:{positive}\:\:{definite}. \\ $$$${If}\:{all}\:\lambda<\mathrm{0}\Rightarrow\:{negative}\:\:{definite}. \\ $$$${If}\:{all}\:\lambda\geq\mathrm{0}\:\:{atleast}\:{one}\:\lambda=\:\mathrm{0}\Rightarrow{positive}\:{semidefinite}. \\ $$$${If}\:{all}\:\lambda\leq\:\mathrm{0}\:{atlest}\:{one}\:\:\lambda=\:\mathrm{0}\Rightarrow{negative}\:{semidefinite}. \\ $$$${If}\:{some}\:\lambda\:{are}\:{positive}\:{and}\:{some}\:\lambda\:{are}\:{negative}\Rightarrow{indefinite}. \\ $$$${X}\:=\:{PY}\:{is}\:{used}\:{transformation}\:{of}\:{quadratic}\:{form}\:{to}\:\:{normal}\:{form}\:\left({or}\right)\:{canonical}\:{form}. \\ $$$${Eg}: \\ $$$$\left({Q}\right)\:{Reduce}\:\:{the}\:{quadratic}\:\:{form}\:\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{3}{z}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{2}{yz}\:=\:\mathrm{0}\:\:{to}\:{canonical}\:{form}\:{by}\:{orthogonal}\:{transformation}\: \\ $$$${and}\:{also}\:{find}\:{rank},\:{index},\:{nature}\:\:{and}\:\:{signature}. \\ $$$${Sol}:\:{The}\:{given}\:{equation}\:{is}\:\:\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{3}{z}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{2}{yz}=\mathrm{0} \\ $$$$\mathrm{3}{xx}+\mathrm{2}{yy}+\mathrm{3}{zz}−{xy}−{xy}−{yz}−{yz}=\mathrm{0} \\ $$$$\:{we}\:{know}\:{that}\:{Q}={X}^{{T}} {AX} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\begin{bmatrix}{{X}}\\{{Y}}\\{{Z}}\end{bmatrix}\begin{bmatrix}{\:\:\:\:\:\mathrm{3}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{bmatrix}\begin{bmatrix}{{X}}&{{Y}}&{{Z}}\end{bmatrix} \\ $$$$ \\ $$$$\:\:\:\:\:{The}\:{corresponding}\:\:{symmetric}\:\:{matrix}\:{A}=\begin{bmatrix}{\:\:\:\:\:\mathrm{3}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\mathrm{0}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{3}}\end{bmatrix} \\ $$$$\:\:\:\:{To}\:{find}\:{the}\:{eigen}\:{values}\:{we}\:{can}\:{use}\:{the}\:{chareteristic}\:{eauation}\:{of}\:{matrix}\:{A}\:{is}\:\mid{A}−\lambda{I}\mid=\:\mathrm{0} \\ $$$$\begin{bmatrix}{\:\:\:\:\:\mathrm{3}−\lambda\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}−\lambda\:\:\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}−\lambda}\end{bmatrix}=\:\mathrm{0} \\ $$$$\left.\left(\mathrm{3}−\lambda\right)\left[\left(\mathrm{2}−\lambda\right)\left(\mathrm{3}−\lambda\right)−\mathrm{1}\right)\right]+\mathrm{1}\left[−\mathrm{1}\left(\mathrm{3}−\lambda\right)\right]=\:\mathrm{0} \\ $$$$\left(\mathrm{3}−\lambda\right)\left(−\mathrm{5}\lambda+\lambda^{\mathrm{2}} +\mathrm{5}\right)+\left(\lambda−\mathrm{3}\right)=\:\mathrm{0} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{8}\lambda^{\mathrm{2}} +\mathrm{19}\lambda−\mathrm{12}=\:\mathrm{0} \\ $$$$\lambda=\mathrm{1},\mathrm{3},\mathrm{4} \\ $$$$ \\ $$$${Case}\:{i}:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda=\mathrm{1}\:{substitute}\:\:{in}\:\left[{A}−\lambda{I}\right]{X}\:=\:\mathrm{0} \\ $$$$\begin{bmatrix}{\:\:\:\:\mathrm{2}\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\mathrm{0}\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}=\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}_{\mathrm{2}} \Rightarrow{R}_{\mathrm{2}} +\mathrm{2}{R}_{\mathrm{1}} \: \\ $$$$ \\ $$$$\begin{bmatrix}{\:\mathrm{2}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:}\\{\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:−\mathrm{2}}\\{\:\mathrm{0}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{bmatrix}\:\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}_{\mathrm{3}} \Rightarrow{R}_{\mathrm{3}} +{R}_{\mathrm{2}} \\ $$$$\begin{bmatrix}{\mathrm{2}\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:−\mathrm{2}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{bmatrix}\:\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}\:=\:\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{2}\:{x}_{\mathrm{1}\:} −{x}_{\mathrm{2}} =\mathrm{0} \\ $$$$\:{x}_{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{3}} =\mathrm{0} \\ $$$$\:{x}_{\mathrm{3}} =\:{k} \\ $$$$\:{x}_{\mathrm{2}} =\:\mathrm{2}{k} \\ $$$$\:{x}_{\mathrm{1}} =\:{k} \\ $$$$\:{x}_{\mathrm{1}} =\begin{bmatrix}{\mathrm{1}}\\{\mathrm{2}}\\{\mathrm{1}}\end{bmatrix}{k} \\ $$$$ \\ $$$${Case}\:{ii}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda\:=\:\mathrm{3}\:\:\:{To}\:{substitite}\:\lambda\:{value}\:{in}\:\left[{A}−\lambda{I}\right]{X}\:=\:\mathrm{0} \\ $$$$\begin{bmatrix}{\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\mathrm{0}}\\{−\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}\:\:−\mathrm{1}}\\{\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({R}_{\mathrm{1}} \Leftrightarrow{R}_{\mathrm{2}} \right) \\ $$$$\begin{bmatrix}{\:−\mathrm{1}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}=\:\begin{bmatrix}{\mathrm{0}\:}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}_{\mathrm{3}} \Rightarrow{R}_{\mathrm{3}} −{R}_{\mathrm{2}} \\ $$$$\begin{bmatrix}{\:\:−\mathrm{1}\:\:\:\:\:\:−\mathrm{1}\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}\mathrm{3}}\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:{x}_{\mathrm{2}} =\:\mathrm{0} \\ $$$$\:\:\:\:−{x}_{\mathrm{1}} −{x}_{\mathrm{2}} −{x}_{\mathrm{3}\:} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:{x}_{\mathrm{3}} \:=\:{k} \\ $$$$\:\:\:\:\:\:\:\:{x}_{\mathrm{1}\:\:} =\:−{k}\: \\ $$$$\:\:\:\:\:\:\:\:\:{x}_{\mathrm{2}} =\:\begin{bmatrix}{−\mathrm{1}}\\{\:\:\:\:\mathrm{0}}\\{\:\:\:\:\mathrm{1}}\end{bmatrix}{k} \\ $$$${Case}\:{iii}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda\:\:=\:\mathrm{4}\:\:{To}\:{substitute}\:{in}\:\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{A}−\lambda{I}\:\right]{X}\:=\:\mathrm{0} \\ $$$$\begin{bmatrix}{\:\:−\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\:−\mathrm{1}\:\:\:\:\:\:\:−\mathrm{2}\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:−\mathrm{1}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}_{\mathrm{2}} \Rightarrow{R}_{\mathrm{2}} −{R}_{\mathrm{1}} \\ $$$$\begin{bmatrix}{\:\:−\mathrm{1}\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:−\mathrm{1}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}_{\mathrm{3}} \Rightarrow{R}_{\mathrm{3}} −{R}_{\mathrm{2}} \\ $$$$\begin{bmatrix}{\:\:−\mathrm{1}\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:−\mathrm{1}\:\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\:\:\:\:\:−{x}_{\mathrm{1}} −{x}_{\mathrm{2}\:} =\:\mathrm{0} \\ $$$$\:\:\:\:\:−{x}_{\mathrm{3}} −{x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:{x}_{\mathrm{3}\:} \:=\:\:\:\:{k} \\ $$$$\:\:\:\:\:\:\:\:{x}_{\mathrm{2}} \:=\:−{k} \\ $$$$\:\:\:\:\:\:\:\:{x}_{\mathrm{1}} \:=\:\:\:\:{k} \\ $$$$\:\:\:\:\:\:\:\:{x}_{\mathrm{3}\:\:} =\:\begin{bmatrix}{\:\:\:\:\mathrm{1}}\\{−\mathrm{1}}\\{\:\:\:\:\:\mathrm{1}\:\:}\end{bmatrix}{k} \\ $$$${we}\:{can}\:{observe}\:{that}\:{vectors}\:{are}\:{orthogonally}\:\:{mutually}\:\:{we}\:\:{normalize}\:{this}\:{vectors}\:{and}\:{obtain}. \\ $$$${e}_{\mathrm{1}} \:=\:\begin{bmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}}\\{\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}}\\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}}\end{bmatrix}\:\:\:\:\:{e}_{\mathrm{2}} =\:\:\begin{bmatrix}{\frac{−\mathrm{1}}{\:\:\:\sqrt{\mathrm{2}}}}\\{\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\end{bmatrix}\:\:\: \\ $$$$ \\ $$$${e}_{\mathrm{3}} \:=\begin{bmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\: \\ $$$${let}\:{P}\:=\:{the}\:{modal}\:{matrix}\:{in}\:{normalized}\:{form}\: \\ $$$${P}\:=\:\left[{e}_{\mathrm{1}\:\:} {e}_{\mathrm{2}} \:{e}_{\mathrm{3}} \right]\:=\begin{bmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}\:}}\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}\:}\:}\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\end{bmatrix} \\ $$$${Since}\:{p}\:{is}\:{a}\:{orthogonal}\:{matrix}\:{P}^{−\mathrm{1}\:} =\:\:{P}^{{T}} \\ $$$$\:{So}\:{D}\:=\:{P}^{{T}} {AP}\:\:\:\:{where}\:\:{D}\:\:{is}\:{diagnol}\:{matrix}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\begin{bmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\frac{−\mathrm{2}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}}\\{\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\end{bmatrix}\begin{bmatrix}{\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{bmatrix}\begin{bmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}\:}}\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\end{bmatrix} \\ $$$${D}\:\:=\:\begin{bmatrix}{\mathrm{1}\:\:\:\mathrm{0}\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\mathrm{3}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\mathrm{0}\:\:\:\:\mathrm{4}}\end{bmatrix} \\ $$$${The}\:{quadratic}\:{form}\:{can}\:{be}\:{reduce}\:{to}\:{normal}\:{form}\:{Y}\:^{{T}} \:{DY} \\ $$$${Y}^{\:{T}} {DY}\:=\:\left[{y}_{\mathrm{1}} \:\:{y}_{\mathrm{2}\:} \:{y}_{\mathrm{3}} \right]\:\begin{bmatrix}{\mathrm{1}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\mathrm{3}\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\mathrm{0}\:\:\:\:\mathrm{4}}\end{bmatrix}\:\begin{bmatrix}{{y}_{\mathrm{1}} }\\{{y}_{\mathrm{2}} }\\{{y}_{\mathrm{3}} }\end{bmatrix} \\ $$$$\:\:\:\:{y}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{3}{y}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{4}{y}_{\mathrm{3}} ^{\mathrm{2}\:} \:\:=\:\mathrm{0}\: \\ $$$$\:\:\:\:{Rank}\:\:\:\:\:\:\:\:\:\:=\:\mathrm{3}\:\:\:\:\:\:\:\:{Index}\:=\:\mathrm{3} \\ $$$$\:\:\:{Signature}=\:\mathrm{3}\:\:\:\:\:\:\:{Nature}={Positive}\:{definite} \\ $$$$\:{By}\:{orthogonal}\:{tfansformation}\:{X}\:=\:{PY} \\ $$$$\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{{x}_{\mathrm{3}} }\end{bmatrix}\:=\:\begin{bmatrix}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}\:\:}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\end{bmatrix}\begin{bmatrix}{{y}_{\mathrm{1}} }\\{{y}_{\mathrm{2}} }\\{{y}_{\mathrm{3}} }\end{bmatrix} \\ $$$${x}_{\mathrm{1}\:\:} =\:\frac{{y}_{\mathrm{1}} }{\:\sqrt{\mathrm{6}}}−\frac{{y}_{\mathrm{2}} }{\:\sqrt{\mathrm{2}}}+\frac{{y}_{\mathrm{3}} }{\:\sqrt{\mathrm{3}}}. \\ $$$${x}_{\mathrm{2}} =\:\frac{\mathrm{2}{y}_{\mathrm{1}} }{\:\sqrt{\mathrm{6}}}−\frac{{y}_{\mathrm{3}} }{\:\sqrt{\mathrm{3}.}} \\ $$$${x}_{\mathrm{3}} =\:\frac{{y}_{\mathrm{1}} }{\:\sqrt{\mathrm{6}}}+\frac{{y}_{\mathrm{2}} }{\:\sqrt{\mathrm{2}}}+\frac{{y}_{\mathrm{3}} }{\:\sqrt{\mathrm{3}.}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\: \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$$${o} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *