Menu Close

0-1-0-y-e-x-2-y-2-dx-dy-1-2-0-2-y-e-x-2-y-2-dx-dy-




Question Number 212053 by universe last updated on 28/Sep/24
    ∫_0 ^1 (∫_0 ^( y)  e^(x^2 +y^2 ) dx)dy +∫_1 ^2 (∫_0 ^( 2−y)  e^(x^2 +y^2 ) dx)dy = ?
$$ \\ $$$$\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\int_{\mathrm{0}} ^{\:\boldsymbol{{y}}} \:\boldsymbol{{e}}^{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} } \boldsymbol{{dx}}\right)\boldsymbol{{dy}}\:+\int_{\mathrm{1}} ^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\:\mathrm{2}−\boldsymbol{{y}}} \:\boldsymbol{{e}}^{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} } \boldsymbol{{dx}}\right)\boldsymbol{{dy}}\:=\:? \\ $$$$ \\ $$
Answered by MrGaster last updated on 03/Nov/24
=∫_0 ^1 ∫_0 ^y (e^(x^2 +y^2 ) dx)dy+∫_1 ^2 (∫_0 ^(2−y) e^(x^2 +y^2 ) dx)dy  =∫_0 ^1 ∫_0 ^y e^(x^2 +y^2 ) dxdy+∫_1 ^2 ∫_0 ^(2−y) e^(x^2 −y^2 ) dxdy…
$$=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{{y}} \left({e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {dx}\right){dy}+\int_{\mathrm{1}} ^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\mathrm{2}−{y}} {e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {dx}\right){dy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{{y}} {e}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {dxdy}+\int_{\mathrm{1}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{2}−{y}} {e}^{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy}\ldots \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *