Menu Close

Question-212239




Question Number 212239 by Spillover last updated on 07/Oct/24
Answered by Ghisom last updated on 08/Oct/24
∫((e^(−x/2) (√(1−sin x)))/(1+cos x))dx=       [t=tan (x/2)]  =∫((e^(−arctan t) (t−1))/( (√(t^2 +1))))dt=  =∫ ((e^(−arctan t) t)/( (√(t^2 +1))))dt−∫ (e^(−arctan t) /( (√(t^2 +1))))dt=       [by parts]  =e^(−arctan t) (√(t^2 +1))+∫ (e^(−arctan t) /( (√(t^2 +1))))dt−∫ (e^(−arctan t) /( (√(t^2 +1))))dt=  =e^(−arctan t) (√(t^2 +1))=  =(e^(−x/2) /(cos (x/2)))+C
$$\int\frac{\mathrm{e}^{−{x}/\mathrm{2}} \sqrt{\mathrm{1}−\mathrm{sin}\:{x}}}{\mathrm{1}+\mathrm{cos}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right] \\ $$$$=\int\frac{\mathrm{e}^{−\mathrm{arctan}\:{t}} \left({t}−\mathrm{1}\right)}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}= \\ $$$$=\int\:\frac{\mathrm{e}^{−\mathrm{arctan}\:{t}} {t}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}−\int\:\frac{\mathrm{e}^{−\mathrm{arctan}\:{t}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}= \\ $$$$\:\:\:\:\:\left[\mathrm{by}\:\mathrm{parts}\right] \\ $$$$=\mathrm{e}^{−\mathrm{arctan}\:{t}} \sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+\int\:\frac{\mathrm{e}^{−\mathrm{arctan}\:{t}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}−\int\:\frac{\mathrm{e}^{−\mathrm{arctan}\:{t}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}= \\ $$$$=\mathrm{e}^{−\mathrm{arctan}\:{t}} \sqrt{{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\frac{\mathrm{e}^{−{x}/\mathrm{2}} }{\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *