Menu Close

show-that-1-2-2-32-2-is-63-2-63-




Question Number 212325 by MASANJAJJ last updated on 10/Oct/24
show that 1+(√(2 ))+2+..........+32(√(2 )) is 63(√2) +63
$${show}\:{that}\:\mathrm{1}+\sqrt{\mathrm{2}\:}+\mathrm{2}+……….+\mathrm{32}\sqrt{\mathrm{2}\:}\:{is}\:\mathrm{63}\sqrt{\mathrm{2}}\:+\mathrm{63} \\ $$
Answered by Ghisom last updated on 10/Oct/24
Σ_(k=0) ^n a^k =((a^(n+1) −1)/(a−1))  Σ_(k=0) ^(11) ((√2))^k =((((√2))^(12) −1)/( (√2)−1))=((64−1)/( (√2)−1))=63(1+(√2))
$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{a}^{{k}} =\frac{{a}^{{n}+\mathrm{1}} −\mathrm{1}}{{a}−\mathrm{1}} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{11}} {\sum}}\left(\sqrt{\mathrm{2}}\right)^{{k}} =\frac{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{12}} −\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}=\frac{\mathrm{64}−\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}=\mathrm{63}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *