Question Number 212745 by RoseAli last updated on 22/Oct/24
Answered by mehdee7396 last updated on 22/Oct/24
$${lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}+{tanx}}{\mathrm{1}−{tanx}}−\mathrm{1}\right)×\frac{\mathrm{1}}{{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{2}{tanx}}{\mathrm{1}−{tanx}}\right)×\frac{\mathrm{1}}{{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{2}}{\mathrm{1}−{tanx}}\right)×\frac{\mathrm{1}}{{cosx}}=\mathrm{2} \\ $$$$\Rightarrow{ans}={e}^{\mathrm{2}} \:\checkmark \\ $$$$= \\ $$
Answered by depressiveshrek last updated on 22/Oct/24
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+\frac{\mathrm{1}+\mathrm{tan}{x}}{\mathrm{1}−\mathrm{tan}{x}}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{sin}{x}}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+\frac{\mathrm{1}+\mathrm{tan}{x}−\left(\mathrm{1}−\mathrm{tan}{x}\right)}{\mathrm{1}−\mathrm{tan}{x}}\right)^{\frac{\mathrm{1}}{\mathrm{sin}{x}}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\left(\mathrm{1}+\frac{\mathrm{2tan}{x}}{\mathrm{1}−\mathrm{tan}{x}}\right)^{\frac{\mathrm{1}−\mathrm{tan}{x}}{\mathrm{2tan}{x}}} \right)^{\frac{\mathrm{2tan}{x}}{\left(\mathrm{1}−\mathrm{tan}{x}\right)\mathrm{sin}{x}}} \\ $$$$={e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2tan}{x}}{\left(\mathrm{1}−\mathrm{tan}{x}\right)\mathrm{sin}{x}}\:\frac{:{x}}{:{x}}} \\ $$$$={e}^{\mathrm{2}\centerdot\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{tan}{x}}{{x}}}{\left(\mathrm{1}−\mathrm{tan}{x}\right)\centerdot\frac{\mathrm{sin}{x}}{{x}}}} \\ $$$$={e}^{\mathrm{2}\centerdot\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{0}\right)\centerdot\mathrm{1}}} ={e}^{\mathrm{2}} . \\ $$