Question Number 212783 by Spillover last updated on 23/Oct/24
Commented by York12 last updated on 25/Oct/24
$$ \\ $$$$ \\ $$$$ \\ $$
Answered by A5T last updated on 24/Oct/24
Commented by A5T last updated on 24/Oct/24
$${a}=\sqrt{{s}^{\mathrm{2}} +\frac{{s}^{\mathrm{2}} }{\mathrm{4}}}−\frac{{s}}{\mathrm{2}}=\frac{{s}\sqrt{\mathrm{5}}}{\mathrm{2}}−\frac{{s}}{\mathrm{2}};\:\:{cos}\theta=\frac{\frac{{s}}{\mathrm{2}}}{\frac{{s}\sqrt{\mathrm{5}}}{\mathrm{2}}}=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$${s}^{\mathrm{2}} =\left(\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{s}}{\mathrm{2}}+{b}\right)^{\mathrm{2}} +{s}×\frac{{s}+\mathrm{2}{b}}{\mathrm{2}}×\frac{\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} +\left(\mathrm{1}+\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right){bs}+{s}^{\mathrm{2}} \left(\frac{\sqrt{\mathrm{5}}−\mathrm{5}}{\mathrm{10}}\right)=\mathrm{0} \\ $$$$\Rightarrow{b}=\frac{−\left(\mathrm{1}+\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right){s}+{s}\sqrt{\left(\mathrm{1}+\:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{4}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{5}}{\mathrm{10}}\right)}}{\mathrm{2}} \\ $$$$=\frac{{s}\left(−\mathrm{1}−\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}+\frac{\mathrm{4}\sqrt{\mathrm{5}}}{\:\mathrm{5}}\right)}{\mathrm{2}}=\frac{{s}\left(−\mathrm{1}+\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{5}}\right)}{\mathrm{2}}\:\:\:\:\left[{since}\:{b}>\mathrm{0}\right] \\ $$$$\Rightarrow\frac{{a}}{{b}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{−\mathrm{1}+\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{5}}}=\varphi^{\mathrm{2}} +\mathrm{1} \\ $$
Commented by Spillover last updated on 24/Oct/24
$${thank}\:{you} \\ $$