Question Number 212790 by RojaTaniya last updated on 24/Oct/24
Answered by A5T last updated on 24/Oct/24
$${x}−{y}=\left({y}−\mathrm{1}+{x}−\mathrm{1}\right)\left({y}−\mathrm{1}−{x}+\mathrm{1}\right) \\ $$$$\Rightarrow{x}={y}\:{or}\:−\mathrm{1}={x}+{y}−\mathrm{2}\Rightarrow{x}+{y}=\mathrm{1} \\ $$$$\Rightarrow{x}+\mathrm{1}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\:{or}\:{x}+\mathrm{1}={x}^{\mathrm{2}} \Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={x}+{y}+\mathrm{2}=\mathrm{3} \\ $$$$\Rightarrow{x}=\mathrm{0}\:{or}\:\mathrm{3};\:{x}=\mathrm{0}\Rightarrow{y}=\mathrm{0}; \\ $$$${x}=\mathrm{3}\Rightarrow{y}=\mathrm{3} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{0}\:{or}\:\mathrm{18}\:{or}\:\mathrm{3}\Rightarrow\left(\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{3}}\right)^{\mathrm{2020}} =\mathrm{0}\:{or}\:\mathrm{1}\:{or}\:\mathrm{6}^{\mathrm{2020}} \\ $$$${when}\:{x}\neq{y};\:\left(\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{3}}\right)^{\mathrm{2020}} =\mathrm{1} \\ $$