Question Number 212827 by Spillover last updated on 25/Oct/24
Answered by A5T last updated on 25/Oct/24
Commented by A5T last updated on 25/Oct/24
$$\frac{{y}}{\frac{\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}}=\frac{{r}}{\frac{\mathrm{4}{r}}{\:\sqrt{\mathrm{3}}}}\Rightarrow{y}=\frac{\mathrm{2}{r}\sqrt{\mathrm{3}}}{\mathrm{3}}×\frac{{r}\sqrt{\mathrm{3}}}{\mathrm{4}{r}}=\frac{{r}}{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{4}}+\left(\mathrm{8}−\mathrm{2}{r}\sqrt{\mathrm{3}}+\sqrt{{r}^{\mathrm{2}} −\frac{{r}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\mathrm{4}\sqrt{\mathrm{3}}−\frac{\mathrm{4}\sqrt{\mathrm{15}}}{\mathrm{3}} \\ $$$$\Rightarrow\left[{green}\right]=\frac{\mathrm{8}×\mathrm{8}{sin}\mathrm{60}}{\mathrm{2}}−\frac{\mathrm{3}\pi{r}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{3}×\mathrm{2}{r}×\frac{\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}}{\mathrm{2}} \\ $$$$=\mathrm{64}\sqrt{\mathrm{15}}−\frac{\mathrm{400}\sqrt{\mathrm{3}}}{\mathrm{3}}+\left(\mathrm{48}\sqrt{\mathrm{5}}−\mathrm{112}\right)\pi \\ $$
Commented by Spillover last updated on 25/Oct/24
$${great}.{thanks} \\ $$
Commented by ajfour last updated on 25/Oct/24
$$\frac{{r}−{y}}{\mathrm{2}{r}}=\frac{{r}−\frac{{r}}{\mathrm{2}}}{\mathrm{2}{r}}=\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{8}=\frac{\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}+\mathrm{2}{r}\mathrm{cos}\:\theta+{r}\mathrm{cos}\:\frac{\pi}{\mathrm{6}}+\frac{{r}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:{r}\left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{15}}}{\mathrm{2}}\right)=\mathrm{8} \\ $$$${r}=\frac{\mathrm{4}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}{\:\sqrt{\mathrm{3}}} \\ $$$${G}=\mathrm{16}\sqrt{\mathrm{3}}−\frac{\mathrm{3}}{\mathrm{2}}×\frac{\left(\mathrm{2}{r}\right)^{\mathrm{2}} }{\:\sqrt{\mathrm{3}}}−\frac{\mathrm{3}\pi{r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:=\mathrm{16}\sqrt{\mathrm{3}}−\left(\mathrm{2}\sqrt{\mathrm{3}}+\frac{\mathrm{3}\pi}{\mathrm{2}}\right)×\frac{\mathrm{32}}{\mathrm{3}}\left(\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}\right) \\ $$$$\: \\ $$
Commented by ajfour last updated on 25/Oct/24
right, its okay now, thank you.
Commented by A5T last updated on 25/Oct/24
$${G}\approx\mathrm{2}.\mathrm{2636} \\ $$
Answered by mr W last updated on 25/Oct/24
Commented by mr W last updated on 25/Oct/24
$$\left(\mathrm{2}{r}\right)^{\mathrm{2}} =\left({r}+\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\left({r}+\frac{{x}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} −\left({r}+\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{3}}}\right)\left({r}+\frac{{x}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${x}^{\mathrm{2}} +\sqrt{\mathrm{3}}{rx}−\mathrm{3}{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right){r}}{\mathrm{2}} \\ $$$$\frac{\mathrm{4}{r}}{\:\sqrt{\mathrm{3}}}+\frac{\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right){r}}{\mathrm{2}}+\frac{\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}=\mathrm{8} \\ $$$$\Rightarrow{r}=\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}{\mathrm{3}}\approx\mathrm{1}.\mathrm{764} \\ $$$${green}\:{area}\: \\ $$$$=\frac{\sqrt{\mathrm{3}}×\mathrm{8}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{3}×\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{2}×\sqrt{\mathrm{3}}}−\frac{\mathrm{3}\pi{r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{3}}×\mathrm{8}^{\mathrm{2}} }{\mathrm{4}}−\frac{\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}\pi\right){r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\mathrm{16}\sqrt{\mathrm{3}}−\frac{\mathrm{16}\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}\pi\right)\left(\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}\right)}{\mathrm{3}} \\ $$
Commented by A5T last updated on 25/Oct/24
Commented by A5T last updated on 25/Oct/24
$${This}\:{is}\:{what}\:{we}\:{get}\:{constructing}\:{with}\:{the}\:{value} \\ $$$${of}\:{the}\:{r}\:{you}\:{got}. \\ $$
Commented by mr W last updated on 25/Oct/24
$${thanks}\:{for}\:{checking}!\:{i}'{ve}\:{fixed}\:{an} \\ $$$${error}\:{in}\:{calculation}. \\ $$
Commented by A5T last updated on 25/Oct/24
$${You}\:{also}\:{forgot}\:{to}\:{subtract}\:{the}\:{area}\:{of}\:{the}\:{three} \\ $$$${right}\:{triangles}. \\ $$
Commented by mr W last updated on 25/Oct/24
$${you}\:{are}\:{right}\:{again}. \\ $$
Commented by Spillover last updated on 25/Oct/24
$${great}.{thanks} \\ $$
Answered by Spillover last updated on 25/Oct/24
Answered by Spillover last updated on 25/Oct/24