Menu Close

lim-x-1-1-x-x-2-e-x-




Question Number 212798 by MrGaster last updated on 24/Oct/24
lim_(x→∞) (1+(1/x))^(x^2 /e^x ) =?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{{x}^{\mathrm{2}} }{{e}^{{x}} }} =? \\ $$
Answered by mehdee7396 last updated on 24/Oct/24
lim_(x→∞) (1+(1/x))=1    &    lim_(x→∞)  (x^2 /e^x )=0  A=(1+(1/x))^(x^2 /e^x )   ⇒lim_(x→∞) A=lim_(x→∞) (x^2 /e^x )ln(1+(1/x))  =0×0=0 ⇒ A=1
$${lim}_{{x}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}\:\:\:\:\&\:\:\:\:{lim}_{{x}\rightarrow\infty} \:\frac{{x}^{\mathrm{2}} }{{e}^{{x}} }=\mathrm{0} \\ $$$${A}=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{{x}^{\mathrm{2}} }{{e}^{{x}} }} \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\infty} {A}={lim}_{{x}\rightarrow\infty} \frac{{x}^{\mathrm{2}} }{{e}^{{x}} }{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$=\mathrm{0}×\mathrm{0}=\mathrm{0}\:\Rightarrow\:{A}=\mathrm{1}\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *